
人形机器人运动控制
文章平均质量分 93
介绍前沿人形机器人运动控制方法
优惠券已抵扣
余额抵扣
还需支付
¥19.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
具身智能与人形机器人
目前在苏州魔法原子,有问题请在评论区留言
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人形机器人强化学习训练全身控制(Whole-Body Control)基础模型
本文介绍了Agility Robotics公司为双足人形机器人Digit开发的全身控制基础模型。该模型采用LSTM神经网络架构,通过数十年仿真训练获得,能零样本迁移至真实世界。研究突破了传统足式机器人的控制局限,实现了末端执行器在自由空间中的精准位置追踪,而非传统速度控制。创新点包括:1)均匀覆盖整个工作空间的训练数据采样方案;2)基于目标位置而非速度的控制范式;3)任务空间而非构型空间的接口设计。该"运动皮层"作为基础安全层,支持叠加复杂行为模式,包括结合大型语言模型实现高级任务规划,原创 2025-09-01 07:30:00 · 796 阅读 · 0 评论 -
Isaac Sim/Lab & ROS2 入门教程 —— 宇树人形机器人 H1 强化学习策略部署
本文介绍了如何通过ROS2和IsaacSim运行H1人形机器人的强化学习运动策略。主要内容包括:1)设置机器人关节配置和初始位置;2)添加IMU传感器;3)配置ROS2节点以发布观测数据和接收动作指令;4)创建模拟环境并发布ROS时钟;5)最终运行ROS2策略实现对机器人的键盘控制。文中详细说明了关节参数设置、传感器配置、ROS2节点创建等关键步骤,并提供了注意事项和验证方法。完成配置后,用户可通过键盘指令控制机器人在平坦地形上的运动。原创 2025-07-10 06:30:00 · 1307 阅读 · 0 评论 -
近期人形机器人强化学习运动控制器综述与分析
本文探讨了人形机器人全身控制器(WBC)的关键作用与发展趋势。WBC作为机器人的"运动皮层",负责将高级指令转化为精确的关节控制,是连接规划层与执行层的核心模块。文章系统分析了18个基于强化学习的WBC系统,揭示了当前主流设计模式:采用50Hz的关节位置输出配合1000Hz的PD控制层;输入通常包含机器人本体感知状态和动作历史;支持多种运动指令模式(如根部速度、全身姿态等)。训练方法主要依赖强化学习结合动作捕捉数据,通过教师-学生框架提升鲁棒性。尽管Unitree平台占据主导地位,但更开原创 2025-08-09 06:30:00 · 1014 阅读 · 1 评论 -
结合强化学习和演示学习的人形机器人运动控制方法一览
本文比较分析了基于特征和基于生成对抗网络(GAN)的两种从演示中学习的方法。基于特征的方法通过显式特征匹配提供密集且可解释的奖励,擅长高保真运动模仿,但缺乏对非结构化环境的泛化能力。基于GAN的方法采用对抗性训练隐式学习相似性度量,具有更好的可扩展性和行为多样性,但存在训练不稳定和奖励信号粗糙的问题。研究发现结构化运动表示是提升两类方法性能的关键,它能实现平滑过渡、可控合成和任务集成。作者指出两类方法并非相互排斥,而应根据任务需求(如保真度、多样性、可解释性和适应性)进行选择,为从演示中学习提供了系统性的决原创 2025-07-26 06:30:00 · 1029 阅读 · 0 评论 -
足式机器人全身 MPPI: 利用 MPPI 对足式机器人进行实时全身控制
本研究首次在真实四足机器人上成功部署了基于全身采样的模型预测控制(MPC)系统。采用模型预测路径积分(MPPI)算法,通过并行采样和评估控制轨迹实现实时运动规划。该系统能处理复杂接触场景,完成推箱子、爬越障碍及崎岖地形行走等任务。实验使用Unitree Go1机器人,结合MuJoCo仿真器快速生成运动策略,仅需简单控制策略即可实现稳健操作。硬件验证表明,该方法能有效完成目标导向的箱子推动任务。该成果标志着采样MPC在足式机器人实际应用中的重要突破。原创 2025-05-30 06:30:00 · 658 阅读 · 0 评论 -
AMO:灵巧人形机器人全身自适应运动最优控制
本文介绍了一种名为自适应运动优化(AMO)的框架,旨在实现人形机器人的超灵巧全身控制。AMO结合了仿真强化学习(RL)和轨迹优化技术,通过混合运动合成和通用策略训练,解决了人形机器人高自由度(DoF)和非线性动力学带来的控制挑战。AMO框架在模拟和29-DoF Unitree G1人形机器人上进行了验证,展示了其在稳定性和工作空间扩展方面的卓越性能。文章还详细描述了AMO的系统架构、训练方法以及在远程操作和自主任务中的应用。实验结果表明,AMO能够有效跟踪运动指令和躯干指令,并在现实世界中表现出强大的适应性原创 2025-05-12 06:00:00 · 1381 阅读 · 0 评论