1、用几种不同的方法证明哈达玛矩阵H满足 HH = I(其中I为单位矩阵)。
以下是调整为 Markdown 格式的文本内容:
第一种方法:使用矩阵代数乘法,$ HH $ 经计算等于单位矩阵 $ I $。
第二种方法:利用叠加原理,由于 $ HH|0\rangle = |0\rangle $ 且 $ HH|1\rangle = |1\rangle $,所以两个连续的哈达玛门对任意叠加态的作用相当于恒等变换。
第三种方法:哈达玛门是厄米的($ H^\dagger = H $)和酉的($ H^\dagger = H^{-1} $),因此 $ HH = HH^\dagger = HH^{-1} = I $。
2、使用叠加原理对广义干涉仪进行分析。
从 $|0\rangle$ 态开始。
-
第一个哈达玛门产生
$$
|0\rangle \rightarrow \frac{|0\rangle + |1\rangle}{\sqrt{2}}
$$ -
移相器在两条路径上独立引入延迟
$$
\frac{|0\rangle + |1\rangle}{\sqrt{2}} \rightarrow \frac{e^{j\alpha_0}|0\rangle + e^{j\alpha_1}|1\rangle}{\sqrt{2}}
$$ -
最后,对计算基向量 $|0\rangle$ 和 $|1\rangle$ 分别应用第二个哈达玛门
$$
|0\rangle \rightarrow \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \quad |1\rangle \rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}
$$
并将结果相加
$$
\frac{e^{j\alpha_0}|0\rangle + e^{j\alpha_1}|1\rangle}{\sqrt{2}} \rightarrow
\left[ \frac{e^{j\alpha_0} \left( \frac{|0\rangle + |1\rangle}{\sqrt{2}} \right)}{\sqrt{2}} \right] +
\left[ \frac{e^{j\alpha_1} \left( \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)}{\sqrt{2}} \right]
$$
最终结果为
$$
= \left( \frac{e^{j\alpha_0} + e^{j\alpha_1}}{2} \right) |0\rangle +
\left( \frac{e^{j\alpha_1} - e^{j\alpha_0}}{2} \right) |1\rangle
$$
3、证明 |1 - e^{jγ}|² = 4 sin²(γ/2)。
利用以下恒等式:
若 $ z \in \mathbb{C} $,则
$$
|z|^2 \equiv z z^*;
\quad
e^{j\gamma} \equiv \cos(\gamma) + j \sin(\gamma);
\quad
\sin^2(\gamma) + \cos^2(\gamma) \equiv 1,
$$
可得
$$
\begin{aligned}
\left|1 - e^{j\gamma}\right|^2
&= \left(1 - \cos(\gamma) - j \sin(\gamma)\right)\left(1 - \cos(\gamma) + j \sin(\gamma)\right) \
&= 2 - 2\cos(\gamma) \
&= 4 \times \frac{1 - \cos(\gamma)}{2} \
&= 4 \sin^2\left(\frac{\gamma}{2}\right).
\end{aligned}
$$
4、证明 |1 - e^{jγ}| ≤ 2。
$$ e^{j\gamma} = \cos(\gamma) + j \sin(\gamma) $$
可表示为复平面上的单位向量,指向 $[\cos(\gamma), \sin(\gamma)]$。
$$ |1 - e^{j\gamma}| $$
是该点与 $[1, 0]$ 之间的距离。由于 $ e^{j\gamma} $ 随 $ \gamma $ 变化扫过单位圆,此距离(弦长)不会超过圆的直径,而圆的直径等于 2。
5、证明当 γ 属于[-π, π]时,|1 - e^(jγ)| ≥ 2|γ|/π。
若将不等式改写为
$$
\frac{|1 - e^{j\gamma}|}{2} \geq \frac{|\gamma|}{\pi}
$$
易知左边是实际弦长与相关最大值(即直径 2)的比值,右边是当前弦对应的弧长除以最大弧长($\pi$)。
由于两边关于纵轴对称,只需在 $[0, \pi]$ 上研究该不等式。
将右边替换为 $\frac{|\gamma|}{a}$($a$ 为实自由参数),此式可视为关于 $\gamma$ 的线性函数,斜率为 $\frac{1}{a}$。
$$
|1 - e^{j\gamma}|^2 \geq \frac{|\gamma|}{a}
$$
当 $\gamma = 0$ 时等式显然成立。
因为上述不等式两边都是无拐点的严格单调递增函数,所以只需检查 $\gamma = \pi$ 的情况。若此时不等式成立,则对其他 $\gamm