量子计算与矩阵证明详解

1、用几种不同的方法证明哈达玛矩阵H满足 HH = I(其中I为单位矩阵)。

以下是调整为 Markdown 格式的文本内容:

第一种方法:使用矩阵代数乘法,$ HH $ 经计算等于单位矩阵 $ I $。

第二种方法:利用叠加原理,由于 $ HH|0\rangle = |0\rangle $ 且 $ HH|1\rangle = |1\rangle $,所以两个连续的哈达玛门对任意叠加态的作用相当于恒等变换。

第三种方法:哈达玛门是厄米的($ H^\dagger = H $)和酉的($ H^\dagger = H^{-1} $),因此 $ HH = HH^\dagger = HH^{-1} = I $。

2、使用叠加原理对广义干涉仪进行分析。

从 $|0\rangle$ 态开始。

  1. 第一个哈达玛门产生
    $$
    |0\rangle \rightarrow \frac{|0\rangle + |1\rangle}{\sqrt{2}}
    $$

  2. 移相器在两条路径上独立引入延迟
    $$
    \frac{|0\rangle + |1\rangle}{\sqrt{2}} \rightarrow \frac{e^{j\alpha_0}|0\rangle + e^{j\alpha_1}|1\rangle}{\sqrt{2}}
    $$

  3. 最后,对计算基向量 $|0\rangle$ 和 $|1\rangle$ 分别应用第二个哈达玛门
    $$
    |0\rangle \rightarrow \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \quad |1\rangle \rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}
    $$

并将结果相加
$$
\frac{e^{j\alpha_0}|0\rangle + e^{j\alpha_1}|1\rangle}{\sqrt{2}} \rightarrow
\left[ \frac{e^{j\alpha_0} \left( \frac{|0\rangle + |1\rangle}{\sqrt{2}} \right)}{\sqrt{2}} \right] +
\left[ \frac{e^{j\alpha_1} \left( \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)}{\sqrt{2}} \right]
$$

最终结果为
$$
= \left( \frac{e^{j\alpha_0} + e^{j\alpha_1}}{2} \right) |0\rangle +
\left( \frac{e^{j\alpha_1} - e^{j\alpha_0}}{2} \right) |1\rangle
$$

3、证明 |1 - e^{jγ}|² = 4 sin²(γ/2)。

利用以下恒等式:
若 $ z \in \mathbb{C} $,则
$$
|z|^2 \equiv z z^*;
\quad
e^{j\gamma} \equiv \cos(\gamma) + j \sin(\gamma);
\quad
\sin^2(\gamma) + \cos^2(\gamma) \equiv 1,
$$
可得
$$
\begin{aligned}
\left|1 - e^{j\gamma}\right|^2
&= \left(1 - \cos(\gamma) - j \sin(\gamma)\right)\left(1 - \cos(\gamma) + j \sin(\gamma)\right) \
&= 2 - 2\cos(\gamma) \
&= 4 \times \frac{1 - \cos(\gamma)}{2} \
&= 4 \sin^2\left(\frac{\gamma}{2}\right).
\end{aligned}
$$

4、证明 |1 - e^{jγ}| ≤ 2。

$$ e^{j\gamma} = \cos(\gamma) + j \sin(\gamma) $$

可表示为复平面上的单位向量,指向 $[\cos(\gamma), \sin(\gamma)]$。

$$ |1 - e^{j\gamma}| $$

是该点与 $[1, 0]$ 之间的距离。由于 $ e^{j\gamma} $ 随 $ \gamma $ 变化扫过单位圆,此距离(弦长)不会超过圆的直径,而圆的直径等于 2。

5、证明当 γ 属于[-π, π]时,|1 - e^(jγ)| ≥ 2|γ|/π。

若将不等式改写为

$$
\frac{|1 - e^{j\gamma}|}{2} \geq \frac{|\gamma|}{\pi}
$$

易知左边是实际弦长与相关最大值(即直径 2)的比值,右边是当前弦对应的弧长除以最大弧长($\pi$)。

由于两边关于纵轴对称,只需在 $[0, \pi]$ 上研究该不等式。

将右边替换为 $\frac{|\gamma|}{a}$($a$ 为实自由参数),此式可视为关于 $\gamma$ 的线性函数,斜率为 $\frac{1}{a}$。

$$
|1 - e^{j\gamma}|^2 \geq \frac{|\gamma|}{a}
$$

当 $\gamma = 0$ 时等式显然成立。

因为上述不等式两边都是无拐点的严格单调递增函数,所以只需检查 $\gamma = \pi$ 的情况。若此时不等式成立,则对其他 $\gamm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值