立即学习:https://edu.csdn.net/course/play/26245/326285?utm_source=blogtoedu
对角矩阵 对称矩阵 单位矩阵 逆矩阵
对角矩阵:除了主对角线,其余元素皆为0;非方阵也可以是对角矩阵;对角方阵是对向量各个维度进行不同程度的拉伸
单位矩阵:(一定为方阵)所有主对角线的元素都是1,其余元素皆为0;单位矩阵映射到其本身
矩阵与其逆矩阵为两个空间的映射与逆映射
一个矩阵是方阵且其列向量之间线性无关,才可能存在逆矩阵
(非方阵的矩阵与向量相乘——该变换会改变向量的维度。一个三维空间的向量,经过2*3的矩阵变换,则将三维空间向量压缩至二维空间,则没有办法通过矩阵变换恢复,因为丢失了一个维度的信息)
向量维数与空间维数的区别
向量维数:向量中分量的个数
如:(a,b,c)这就是一个三维向量
空间维数:指空间基中向量的个数,并不是由向量的维数确定的。
如{x|x=m(a,0,0)+n(0,0,c),m,n为任意常数}这就是二维向量空间。就是空间当中的一个平面。
[A|E]—(行变换)—>[E|A-1]