学习笔记(9):程序员的数学:线性代数-让矩阵计算变得容易

立即学习:https://edu.csdn.net/course/play/26245/326285?utm_source=blogtoedu

对角矩阵 对称矩阵 单位矩阵 逆矩阵

 对角矩阵:除了主对角线,其余元素皆为0;非方阵也可以是对角矩阵;对角方阵是对向量各个维度进行不同程度的拉伸

单位矩阵:(一定为方阵)所有主对角线的元素都是1,其余元素皆为0;单位矩阵映射到其本身

矩阵与其逆矩阵为两个空间的映射与逆映射

一个矩阵是方阵且其列向量之间线性无关,才可能存在逆矩阵

(非方阵的矩阵与向量相乘——该变换会改变向量的维度。一个三维空间的向量,经过2*3的矩阵变换,则将三维空间向量压缩至二维空间,则没有办法通过矩阵变换恢复,因为丢失了一个维度的信息)

向量维数与空间维数的区别

向量维数:向量中分量的个数
如:(a,b,c)这就是一个三维向量

空间维数:指空间基中向量的个数,并不是由向量的维数确定的。
如{x|x=m(a,0,0)+n(0,0,c),m,n为任意常数}这就是二维向量空间。就是空间当中的一个平面。

[A|E]—(行变换)—>[E|A-1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值