题目
题目大意
其实这题的题目大意非常简练,所以我认为我不用解释了。
思考历程
首先乱推了一波,然后什么东西都没有发现。
于是想想
D
(
i
)
D(i)
D(i)的性质。
我发现,由于每次是将各位上的数字相加。所以最多操作三次。
本来是一个很大的数,然后缩小成百位数,然后缩成十位数,最后缩成个位数。
我想,既然缩小一次就成了百位数了,所以,为什么不直接把百位数的表打出来,然后再继续推式子呢?
然后我就把表打了出来。
于是我就发现,我前面的想法尽是没用的……
因为我发现了一个显而易见的规律:
D
(
i
)
=
(
i
−
1
)
m
o
d
  
9
+
1
D(i)=(i-1) \mod 9+1
D(i)=(i−1)mod9+1
这个规律可以感性理解,也可以理性证明,反正很简单,我就不说了。
所以说,一个“被喜欢的数”就是能被
x
∗
(
(
x
−
1
)
m
o
d
  
9
+
1
)
x*((x-1)\mod 9+1)
x∗((x−1)mod9+1)表示的数。
接下来就开始了我的瞎搞历程(提醒一下,正确性有误……)
由于
D
(
x
)
<
=
9
D(x)<=9
D(x)<=9,不妨枚举
D
(
x
)
D(x)
D(x),设为
j
j
j。
设现在的数为
i
i
i。显然,如果要成立,首先要满足
i
m
o
d
  
j
=
0
i \mod j=0
imodj=0。
然后乱推:
(
i
j
−
1
)
m
o
d
  
9
+
1
=
j
\left(\frac{i}{j}-1\right) \mod 9+1 =j
(ji−1)mod9+1=j
所以
(
i
j
−
1
)
m
o
d
  
9
=
j
−
1
\left(\frac{i}{j}-1\right) \mod 9=j-1
(ji−1)mod9=j−1
由于
j
−
1
<
9
j-1< 9
j−1<9,所以
i
j
−
1
≡
j
−
1
(
m
o
d
  
9
)
\frac{i}{j}-1 \equiv j-1 (\mod 9)
ji−1≡j−1(mod9),所以
i
j
≡
j
(
m
o
d
  
9
)
\frac{i}{j} \equiv j (\mod 9)
ji≡j(mod9)
然后就是最尴尬的步骤:
i
≡
j
2
(
m
o
d
  
9
)
i\equiv j^2(\mod 9)
i≡j2(mod9)
所以说,如果
i
i
i满足条件,必定有一个
j
j
j使得
i
m
o
d
  
j
=
0
i \mod j=0
imodj=0且
i
≡
j
2
(
m
o
d
  
9
)
i\equiv j^2(\mod 9)
i≡j2(mod9)。
哈,这东西好像可以DP!
设
f
i
,
j
,
k
f_{i,j,k}
fi,j,k表示到第
i
i
i位,模
2520
2520
2520的余数为
j
j
j,第
i
i
i位上的值为
k
k
k的数的个数。
(
2520
2520
2520是
1
1
1到
9
9
9的最小公倍数)
按照之前推出来的条件,我们可以发现它是否为“被喜欢的数”只和
j
j
j有关。
那我就可以愉快地数位DP了。
然而现实是残酷的……
WA了……
后来推了好久,我发现原来是上面的一步出现了问题:
我们知道
i
j
≡
j
(
m
o
d
  
9
)
\frac{i}{j} \equiv j (\mod 9)
ji≡j(mod9),可以推出
i
≡
j
2
(
m
o
d
  
9
)
i\equiv j^2(\mod 9)
i≡j2(mod9)。可是后者不一定推出前者。
因为
9
9
9不是质数……
不过如果只有这点错误,随便改一改那似乎也是可以过得去的。
然后我就发现原来还是需要判重!
怎么判?数位DP怎么判?判不了啊!
XC说,今天除了第一题之外,其他的题还是很有难度的。
除了第一题!!!!!!
正解
先说一个别人家的正解(当然我不懂是为什么):
就是打一波表,然后发现,咦,原来是有循环节的!
然后就随随便便的搞定了……
然后再说一个正经一些的做法:
首先对于一个数
x
∗
D
(
x
)
x*D(x)
x∗D(x),我们可以将其表示为
(
9
t
+
D
(
x
)
)
∗
D
(
x
)
(9t+D(x))*D(x)
(9t+D(x))∗D(x)。
D
(
x
)
D(x)
D(x)的取值是很少的,也就只有
9
9
9种。
我们把它当成常数来看,然后就变成
9
D
(
x
)
∗
t
+
D
2
(
x
)
9D(x)*t+D^2(x)
9D(x)∗t+D2(x),变成
a
t
+
b
at+b
at+b的形式。
对于一个
D
(
x
)
D(x)
D(x),我们可以很容易地计算出它在某一个区间里的贡献。
然后我们要去重。
如何去重?容斥原理,将一些式子合并一下就可以了。用扩展中国剩余定理就好。
可以手打扩展中国剩余定理,其实也是可以推出来的嘛……
可是某些机智懒惰的同学发现了一个好方法:
我们将所有的
D
(
x
)
D(x)
D(x)的式子列出来,然后将它们都模
9
9
9。
然后就会惊奇地发现下面的这张表:
1 4 0 7 7 0 4 1 0
只有模数相同的有可能可以合并。
所以运算量大大减少……
然后我就全部手推出来了。具体见程序(有的式子合并之后无解,我也有注释)。
然后这题就愉快地解决了。
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
struct func{
int a,b,ty;
} d[20];
int cnt;
inline long long getans(long long lim){
long long res=0;
for (int i=1;i<=cnt;++i)
if (lim-d[i].b>=0)
res+=((lim-d[i].b)/d[i].a+1)*d[i].ty;//计算贡献……不用解释
return res;
}
int main(){
for (int i=1;i<=9;++i)
d[++cnt]={i*9,i*i,1};
d[++cnt]={72,64,-1};//d[1] and d[8]
d[++cnt]={126,112,-1};//d[2] and d[7]
d[++cnt]={180,160,-1};//d[4] and d[5]
d[++cnt]={54,36,-1};//d[3] and d[6] 其实在仔细观察之后可以发现,这个和d[6]抵消了。
//d[3] and d[9]=empty
//d[6] and d[9]=empty
//d[3] and d[6] and d[9]=empty
int T;
scanf("%d",&T);
while (T--){
long long l,r;
scanf("%lld%lld",&l,&r);
printf("%lld\n",getans(r)-getans(l-1));
}
return 0;
}
总结
每次做比赛时,我要么是不屑于打表,要么就是懒得打表。
可是经验和事实告诉我们,打表是信息学竞赛选手必备的技能!
我们要培养起自己的打表精神,让它贯彻入信息学竞赛中!
瞎BB结束