Stable Diffusion【进阶篇】:真人漫改之图生图实现

本文详细介绍了如何在StableDiffusion中使用图生图技术实现真人漫改,包括图片上传、参数设置(如重绘强度)、提示词编写,以及选择合适的二次元大模型。作者强调了后期处理的重要性,并讨论了AIGC技术的前景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是小梁子。

所谓真人漫改,就是把一张真人的图片生成一张新的二次元的图片,在Stable Diffusion中,有很多方式实现,其中通过图生图的方式是最常用的方式,大概1-3分钟就可以完成。在Stable Diffusion:图生图基础,中曾详细讲解过具体实现,本文我们再系统的讲解一下。

下面我们来详细看一下图生图实现真人漫改的具体实现方式。

【第一步】:图生图图片上传以及相关参数设置

在图生图功能菜单界面,我们选择【图生图】上传一张我们需要漫改的真人照片。

下面进行相关参数设置。

  • 采样器:DPM++2M Karras

  • 采样迭代步数:30

  • 图片宽高:保持和上传的图片宽高一致或者定比例的放大或者缩小。

  • 重绘强度:建议设置在0.45-0.65之间,这个参数值并不是固定的,在实际使用过程中可以多尝试不同的重绘强度值,这里可以使用脚本插件的方式一次生成不同重绘强度值的多张图片。(重绘强度是图生图最重要的一个参数设置,用于控制生成的图片和原来的图片的相似度有多大。它的取值范围为0-1,默认值0.75。值越小,和原来的图片相似度越高,AI自由发挥的空间也越小。值越大,和原来的图片相似度越低,AI自由发挥的空间也越大)。

【第二步】提示词的编写

如果我们知道上传图片的提示词,可以直接将图片的提示词复制过来。

如果我们不知道上传图片的提示词,可以看之前的文章【Stable Diffusion:图片信息获取】。这里推荐使用Tagger插件的方式获取,因为生成提示词效果较好。

通过Tagger插件获取的提示词为:

1girl, solo, long hair, jewelry, necklace, brown hair, chalkboard, looking at viewer, window, realistic, black eyes, lips, classroom, indoors, upper body, white dress, dress

因为我们需要真人漫改生成对应的二次元图片,我们要检查一下提示词,建议使用翻译软件把提示词翻译出来详细检查一遍,把不符合要求的提示词去掉,比如这里提示词realistic(逼真)就需要拿掉。

最终的提示词:

1girl, solo, long hair, jewelry, necklace, brown hair, chalkboard, looking at viewer, window, black eyes, lips, classroom, indoors, upper body, white dress,dress(女孩,solo,长发,珠宝,项链,棕色头发,黑板,看着观众,窗户,黑眼睛,嘴唇,教室,室内,上身,白色连衣裙,连衣裙)

【第三步】大模型的选择以及图片的生成

真人漫改需要生成二次元的图片,所以大模型需要选择二次元的大模型。

这里我们选择不同的二次元大模型来看一下效果。

原图

大模型:Anything v5 Prt

大模型:Counterfeit V3.0

大模型:Cetus-Mix Coda2

大模型:MeinaUnreal V3

关于真人漫改的图生图实现方式大家按照上面的操作步骤实现即可。

相关说明:

(1)在上面的真人漫改中,如果美女带有首饰等,漫改图片中变化还是比较大。一般真人漫改主要的关注点还是人,我们可以在提示词中将首饰等关键词去掉,当然这个还是要根据实际情况而定。

(2)真人漫改,大模型一定要选择二次元的大模型,但是可供选择的还是比较多的,大家可以根据自己的需求选择,在之前的文章中给大家详细介绍过常用的10几种动漫大模型。

(3)漫改后的图片一般效果并不是很理想,大家需要后期进行处理,最直接的方式是借助SD Web UI的后期处理功能。其中缩放比例设置为4,缩放算法选择:R-ESRGAN_4x+ Anime6B。

我们看一下未进行和进行过后期处理后图片的效果差异。(左边图片是未处理的,右边图片是经过后期处理的)

在本文中,最终生成的图片我都采用了后期处理。

好了,今天的分享就到这里了,关于真人漫改还有一些其他的实现方式,后面我们会继续分享,希望今天分享的内容对大家有所帮助。

文章使用的大模型、Lora模型、SD插件、示例图片等,都已经上传到我整理的 Stable Diffusion 绘画资源中。有需要的小伙伴文末扫码自行获取。

写在最后

全套AI实用插件已打包,有需要的小伙伴可以自取,无偿分享。
在这里插入图片描述
在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

若有侵权,请联系删除

<think>好的,用户是一个从事瑜伽服装美工工作的小白,经常需要用真人模特试穿瑜伽服来展示效果。他想学习使用DeepSeek和Stable Diffusion实现将平拍的瑜伽服转真人模特试装,达到商业级别的要求,包括面料真实、纹理细节清晰和光影自然。我需要一步步帮他规划学习路径,并提供实用的建议。 首先,得明确他的需求。他需要将平拍真人模特试装,这可能涉及到成中的(img2img)技术。Stable Diffusion在这方面有很好的应用,但需要调整参数和模型来达到高质量效果。 接下来,我需要考虑他作为小白的背景。可能对AI工具不熟悉,所以得从基础开始,分步骤引导。首先了解Stable Diffusion的基本原理和工具使用,然后是准备数据,训练模型,最后是优化输出。 面料真实和细节清晰可能需要微调模型或者使用LoRA这样的技术来增强特定细节。光影自然涉及到光照的一致性和投影处理,可能需要后期调整或使用ControlNet来控制成过程中的光影结构。 另外,商业级别的要求意味着输出必须高分辨率,没有瑕疵,可能需要使用放大算法如ESRGAN或者Stable Diffusion的高分辨率修复功能。 还需要考虑版权问题,确保使用的模型和训练数据合法,特别是在商业用途中。推荐使用开源模型或自己训练的数据集。 可能遇到的挑战包括保持服装设计的准确性,避免变形,以及处理不同体型模特的适配。ControlNet的姿势检测和深度可能有助于保持模特的姿态和服装的贴合度。 最后,提供资源链接和推荐工作流程,帮助他一步步实践,从数据准备到模型训练,再到成和后期处理,确保每个环节都考虑到质量和效率。</think>以下是针对瑜伽服装美工工作者的Stable Diffusion应用指南,通过7个步骤实现商业级服装效果成: 一、基础准备阶段 1. 工具安装 - 推荐使用DeepSeek平台提供的Stable Diffusion云端服务 - 准备NVIDIA显卡(建议RTX 3060 12G以上)用于本地测试 2. 数据采集规范 - 平拍标准:纯色背景(推荐潘通中性灰) - 拍摄参数:ISO 100,光圈f/8,双灯45度布光 - 文件格式:RAW+JPG双格式,分辨率不低于6000x4000 二、核心模型选择 1. 基础模型推荐 - Realistic Vision V5.1(写实风格) - EpicRealism Natural Sin RC1(皮肤质感优化) 2. 专用适配模型 - Fashion-Artisan LoRA(服装细节增强) - FabricTextureXL(面料纹理成) 三、ControlNet参数配置 ```python # 典型控制参数配置示例 controlnet_args = { "preprocessor": "canny", # 边缘检测保持版型 "model": "control_v11p_sd15_canny", "weight": 0.8, "guidance_start": 0.1, "guidance_end": 0.9, "canny_low": 50, # 边缘检测阈值 "canny_high": 150 } ``` 四、提示词工程模板 ```markdown 正向提示词: (high detail RAW photo:1.3), (professional studio lighting:1.2), [瑜伽服主体描述], texture details visible, model posing in downward dog position, soft shadows, 8k uhd, dslr, film grain 反向提示词: deformed, lowres, bad anatomy, extra limbs, poor lighting, overexposed, logo, watermark ``` 五、工作流程优化 1. 多阶段成策略 - 第一阶段:512x768低分辨率成姿势和版型 - 第二阶段:1024x1536高清修复(使用Ultimate SD Upscale) - 第三阶段:局部重绘修正细节(袖口/裤脚等部位) 2. 面料保真技巧 - 使用Inpaint+Latent Couple技术局部保留面料纹理 - 纹理强度系数建议:0.65-0.78 六、质量评估标准 1. 商业级验收指标 - 面料纹理:20线/mm清晰可见 - 接缝处理:双针走线可见 - 光影过渡:0-100%亮度渐变自然 - 皮肤质感:毛孔级细节(建议使用GPEN增强) 七、效率提升方案 1. 批量处理脚本示例 ```bash python batch_process.py \ --input_dir ./flat_garments \ --output_dir ./rendered \ --checkpoint models/fashion_v3.safetensors \ --lora_weights fashion_lora:0.7 ``` 进阶建议: 1. 建立专属素材库:收集200+张品牌历史拍摄素材,训练专属LoRA 2. 动态骨骼绑定:使用Blender制作标准动作库,确保姿势准确性 3. 物理渲染增强:在NukeX中进行次表面散射(SSS)效果后期处理 推荐学习路径: 1. 第1周:掌握SD WebUI基础操作 2. 第2周:学习ControlNet服装应用 3. 第3周:LoRA模型微调训练 4. 第4周:商业级修技巧(频率分离处理) 注意事项: - 使用AMD显卡需配置ROCM环境 - 涉及人体成需遵守当地AI伦理法规 - 商业项目建议使用SDXL 1.0模型+1024分辨率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值