Stable-Diffusion小知识:图生图-局部重绘功能

文章使用的AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。

当我们使用Stable-Diffusion生成图片后,若是想要修改或新增某些细节,如果使用文生图或图生图去抽卡生成图片,那么能生成出满意图片的概率就比较小了。但我们可以使用图生图种的局部重绘功能,通过这个功能我们可以轻松的调整画面中部分画面内容和细节。

我们启动Stable-Diffusion-WebUI界面,点击图生图就可以看到局部重绘功能。

首先介绍一下局部重绘中的功能和使用:

1、缩放方式:若原图与设置尺寸不一致时,选择拉伸、裁切、填充会有不同的效果。

2、蒙版模糊:重绘蒙版内容就是重新画被涂掉的部分、重绘非蒙版内容就是重新画没有涂掉的部分

3、蒙版蒙住的内容:这4个选项差异不大,但是不同原图有不同效果,生成图片时需要自行尝试。

4、重绘区域:仅画蒙版(涂黑的区域)或是整个图片;(这里根据不同的重绘内容尝试选择)

5、仅蒙版模式的边缘预留像素:蒙版边缘与原图交接处的像素,可以让新生成的内容与原图更好的融合在一起(一般25-35就行)

其他设置基于与文生图内操作一致,选择采样方式、迭代步数等,这里建议在使用局部重绘时,要选择与原图一致的设置,从而可以确保重绘效果。

我们点击上传图片后,会看到在图片右上边显示3个功能项,叉叉是删除图像;圆形是撤回涂抹的步骤;画笔可以调整粗细,然后使用画笔在图片上把需要重新绘制的区域涂上;

这里特别说明一下,画笔涂抹后会显示黑色,黑色遮盖的区域是蒙版内容;未被黑色遮盖的就是非蒙版内容;


说了这么多的介绍,我们通过实操来看看局部重绘到底是什么效果;

我们上传原图后可以使用Stable-Diffusion-WebUI的图片信息功能读取图片的关键词等信息,然后发送到图生图-局部重绘里即可;这里原图的关键词是:a girl, blue hair, Pink eyes, white shirt with green tie, red Pleated skirt, white leather boots

这次我们想要把人物的衣服进行修改,那么就把衣服部分涂抹掉。把提示词中的white shirt修改为sailor suit,其他提示词不做改变。采样方式、尺寸都与原图保持一致,蒙版模式选择重绘蒙版内容,蒙版蒙住的内容选择原图,重绘区域选择仅蒙版

重绘后可以看到人物的衣服确实发生的改变,而且人物其余的部分并未有变化;

当然不仅仅可以换衣服,我们也可以通过局部重绘让人物有异瞳的画面。只需要用画笔遮盖住一只眼睛,然后把pink eyes修改为yellow eyes。这里重绘区域可以考虑选择全图,由于眼睛占比小,局部重绘可能会让眼睛与原画面不匹配。

可以看到,局部重绘后,我们获得了异瞳的人物,并且画面其余部分并未有任何异常的变化。

除开改变画面中原有内容之外,也可以添加一些新的元素到图片中,例如我们人物有一个猫耳朵,那么用画笔把希望有猫耳朵的区域涂抹一下,然后在关键词里输入“Cat ears”,点击生成图片。

OK,我们得到了有猫耳朵的人物了。

局部重绘可以帮助大家不断对画作进行迭代和修改,最终达到理想的画面效果。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### 使用 Stable Diffusion WebUI 进行训练 #### 什么是是指通过输入一张参考像以及一些参数设置,利用 AI 模型成新的像的过程。在 Stable Diffusion 中,WebUI 提供了一个友好的界面来进行此类操作[^2]。 #### 主要功能模块 Stable Diffusion WebUI 的功能支持多种模式和工具,包括但不限于以下几种: - **基础**:基于参考成新像。 - **手修正/涂鸦制**:允许用户通过简单的草或线条调整目标区域的内容。 - **局部**:仅成指定部分的像内容,保留其他区域不变。 - **蒙版引导的编辑**:可以使用黑白掩码或者自定义颜色掩码实现更精确的控制。 - **批量处理**:一次性对多张图片应用相同的变换逻辑。 - **反推提示词**:自动分析现有像的关键特征,并尝试推测其可能对应的文本描述[^3]。 #### 实际操作指南 以下是关于如何配置环境及执行具体任务的一些指导: 1. **准备阶段** - 下载安装好最新版本的 Stable Diffusion WebUI 软件包及其依赖项。 - 载预训练权文件至本地运行环境中以便于即时测试不同效果。 2. **启动服务端口访问页面** 执行命令如下所示以开启形化管理面板: ```bash python webui.py --listen --port=7860 ``` 3. **载模型与扩展组件** 确认所使用的扩散网络架构适配当前项目需求;同时激活必要的附脚本如 ControlNet 或者 Pose Detection 插件提升创作灵活性[^4]。 4. **设定基本参数** 用户需填写以下几个要字段才能顺利开始渲染流程: - Prompt (正面指示语句卡) - Negative prompt (负面排除列表) - Sampling steps (采样迭代次数) - CFG scale (条件因子强度等级) 5. **导入素材源文件** 将待工的照片拖拽上传到对应位置框内作为初始依据材料之一。 6. **启用高级选项(可选)** 如果希望进一步细化成果表现,则考虑采用下列策略优化细节呈现质量: - 利用“Denoising strength”滑竿调节去噪力度平衡真实感还原度与创意发挥空间之间的关系; - 结合特定风格迁移算法切换整体视觉基调方向; - 对某些特殊部位单独施额外约束条件限制范围内的变动幅度不至于过大破坏原有结构比例协调性等问题发几率降低不少哦! 7. **提交作业等待完成反馈结果展示** --- ```python from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler model_id = "runwayml/stable-diffusion-v1-5" scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` 上述代码片段展示了如何借助官方库快速搭建简易管线实例用于初步探索验证概念可行性等方面的工作效率有所提高的同时也简化了许多繁琐的手动调试环节带来的不便之处[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值