手把手教你用Stable Diffusion免费扩展图片

Stable Diffuison(以下简称SD)这款AI工具,潜力无限,之前介绍过能用来画插画、二维码、数字人、换脸、动画等,今天我又发现SD还能用来快速扩展图片,只需几步,1分钟就能上手,快随我去看看吧~
文章使用的AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,无需自行查找,。有需要的小伙伴文末扫码自行获取。

准备工作

安装超级简单,跟着我的步骤一步步来就好:

第一步,确保已经在电脑上安装并运行SD的Webui界面。

①想要自己本地部署的朋友,可以翻看我之前分享的文章。

②推荐:我也准备了由其他大神整合的免部署解压即用的安装包(推荐B站秋叶aaaki的整合包),无需自行查找,文末扫码我直接发你。

第二步,下载必备模型文件control_v11p_sd15_inpaint.pth(这个文件没有在整合包中,文末附下载哦),并放置在extensions\sd-webui-controlnet\models中。

在这里插入图片描述

至此,准备工作已完成。

开始扩图

启动SD web ui,在文生图界面,选择一张你喜欢的图片,输入提示词和反向提示词,并配置采样方法、迭代步骤等。

查询图片的宽度和高度(非常关键),右键查看属性即可查询,比如我上传的案例图是450*675。

固定一项,然后扩展另一项,比如我这里先固定了宽度是450,然后高度是1280,即把图片的高度从675扩展到了1280。

接下来配置ControlNet:

  • 启用ControlNet单元0,勾选“启用”和“Pixel Perfect”

  • Control Type:局部重绘

  • 预处理器:inpaint_only+lama

  • 模型:control_v11p_sd15_inpaint

  • Control Mode:选择ControlNet is more important

  • 画面缩放模式:选择Resize and Fill

之后点击“生成”按钮,等待片刻即可,下图为扩展了高度的效果。

之后再以高度扩展后的图为基础,进行宽度扩展,将生成的图片尺寸改为1280*1280,即可获得效果更好的扩展图片:

在这里插入图片描述

SD作为AI绘图的神器,还有很多潜力可以挖掘,我也会持续研究并分享给大家。感兴趣的朋友快去试试吧,记得关注并三连支持下哦!

文章使用的AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,无需自行查找,。有需要的小伙伴文末扫码自行获取。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
Stable Diffusion是一款基于深度学习的文本到像模型,能够根据输入的文字提示生成相应的图片。为了帮助您了解如何使用Stable Diffusion批量生成图片的过程,下面将为您详细介绍。 ### 环境准备 首先你需要准备好适合运行Stable Diffusion的工作环境: 1. **硬件设备**:建议配备一块NVIDIA GPU,显存越大越好;如果没有GPU也可以只依靠CPU工作,不过效率会非常低。 2. **安装Python环境**:通常选择Anaconda来管理虚拟环境可以简化依赖包之间的冲突问题。 3. **获取Stable Diffusion WebUI项目源码**: - 可以从GitHub上克隆官方仓库`https://github.com/AUTOMATIC1111/stable-diffusion-webui.git` 4. 安装必要的依赖库并启动Web UI界面: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui conda env create -f environment.yaml # 或者使用 pip install 脚本里的命令去创建pip环境 ``` 5. 根据系统情况调整配置文件中的设置(例如CUDA版本等) ### 批量生成功能实现步骤 接下来就是具体的批处理流程了: 1. 进入StableDiffusion web ui页面后,在左侧找到“Batch Generate”选项卡; 2. 设置好每次迭代的数量、随机种子值范围以及总的迭代次数等等参数; 3. 输入想要转换成画内容描述语句作为Prompt,并设定Negative Prompt避免某些特征出现在最终结果里; 4. 修改其他如风格倾向(Style)、CFG Scale、采样步数(Sampling Steps)等相关超参直至满意为止; 5. 开始点击"Generate"按钮就可以让程序自动为你生成一系列高质量的艺术作品啦! 需要注意的是由于这是一个比较消耗资源的任务,所以在长时间稳定输出之前最好先做一些小规模测试熟悉整个过程并且观察效果是否达到预期标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值