深度学习——第6章 浅层神经网络(NN)

本章节详细介绍了浅层神经网络(NN)的结构和工作原理,包括神经网络模型概述、正向传播和反向传播的过程。重点讨论了权重和偏置的初始化、激活函数的选择以及正向传播中矩阵运算的应用。文中提到了Sigmoid、tanh、ReLU和Leaky ReLU等激活函数,强调了非线性激活函数在神经网络中的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第6章 浅层神经网络(NN)

目录

6.1 神经网络模型概述

6.2 神经网络正向传播

6.3 神经网络反向传播

6.4 W和b的初始化

6.5 总结

上一课主要介绍了一些神经网络必备的基础知识,包括Sigmoid激活函数、损失函数、梯度下降和计算图。这些知识对学习神经网络非常有用。本节将开始真正的神经网络学习,从一个浅层的神经网络出发,详细推导其正向传播和反向传播完整过程。

6.1 神经网络模型概述

首先,我们来看一个简单的神经网络模型:

在这里插入图片描述

最简单的神经网络模型由输入层(Input Layer)、隐藏层(Hidden Layer)、输出层(Output Layer)组成,我们称之为2层神经网络。隐藏层和输出层都由个数不一的神经元组成。如上图所示,输入层有3个输入:x1、x2、x3,分别代表不

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曲入冥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值