第6章 浅层神经网络(NN)
目录
6.1 神经网络模型概述
6.2 神经网络正向传播
6.3 神经网络反向传播
6.4 W和b的初始化
6.5 总结
上一课主要介绍了一些神经网络必备的基础知识,包括Sigmoid激活函数、损失函数、梯度下降和计算图。这些知识对学习神经网络非常有用。本节将开始真正的神经网络学习,从一个浅层的神经网络出发,详细推导其正向传播和反向传播完整过程。
6.1 神经网络模型概述
首先,我们来看一个简单的神经网络模型:

最简单的神经网络模型由输入层(Input Layer)、隐藏层(Hidden Layer)、输出层(Output Layer)组成,我们称之为2层神经网络。隐藏层和输出层都由个数不一的神经元组成。如上图所示,输入层有3个输入:x1、x2、x3,分别代表不