#机器学习线性判别分析3.5题
import numpy as np
import matplotlib.pyplot as plt
data = [[0.697, 0.460, 1],
[0.774, 0.376, 1],
[0.634, 0.264, 1],
[0.608, 0.318, 1],
[0.556, 0.215, 1],
[0.403, 0.237, 1],
[0.481, 0.149, 1],
[0.437, 0.211, 1],
[0.666, 0.091, 0],
[0.243, 0.267, 0],
[0.245, 0.057, 0],
[0.343, 0.099, 0],
[0.639, 0.161, 0],
[0.657, 0.198, 0],
[0.360, 0.370, 0],
[0.593, 0.042, 0],
[0.719, 0.103, 0]] #书中89页西瓜数据集
#数据集按瓜好坏分类
data = np.array([i[:-1] for i in data])
X0 = np.array(data[:8])
X1 = np.array(data[8:])
#求正反例均值
miu0 = np.mean(X0, axis=0).reshape((-1, 1))
miu1 = np.mean(X1, axis=0).reshape((-1, 1))
#求协方差
cov0 = np.cov(X0, rowvar=False)
cov1 = np.cov(X1, rowvar=False)
#求出w
S_w = np.mat(cov0 + cov1)
Omiga = S_w.I * (miu0 - miu1)
#画出点、直线
plt.scatter(X0[:, 0], X0[:, 1], c
周志华《机器学习》3.5答案-编程实现线性判别分析,并给出西瓜数据集3.0α上的结果
最新推荐文章于 2024-10-08 14:42:26 发布
本文介绍了如何编程实现线性判别分析,并展示了在西瓜数据集3.0α上的应用结果。通过运行代码,得到了直观的分析结果。
摘要由CSDN通过智能技术生成