聚类Clustering方法定位船舶站点

文章介绍了通过处理船舶航线数据,尤其是静止状态下的航速、经纬度和吃水量信息,来识别LNG站点的方法。首先,对数据进行预处理,通过经纬度聚合和吃水量变化判断船只行为。接着,应用DBSCAN、OPTICS和AGNES三种聚类算法定位LNG站点,分析站点数量和类型。后续工作可能涉及站点归属地的确定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

现有船舶的航线中采样的数据库,采样的总时长为3个月,仅采样航速静止(小于1节)的数据,关键有效数据主要有经纬度/实时吃水量。

思路

基于站点附近轮船有停靠且航行速度慢,故取样点多的基础认识,计划使用聚类方法定位LNG站点位置,并基于船舶吃水量的变化判断站点的属性:进口/出口/停泊。

Step 1: 数据预处理

基于原始数据文件中的关键数据,分别对应经度(long)、纬度(lati)、吃水量(draft)。数据中相邻若干行两两之间若基于经纬度计算得到的距离小于5千米,则将这些数据视为同一个坐标点,位置信息存在取样误差,位置信息(经度、维度)取均值得到;若相邻行计算距离大于5km,则两个数据视为不同的有效坐标点。至此,位置信息处理完毕,后续基于吃水量变化情况判断船只行为。如果吃水量变大,则船只货物增多,标记为1,表示进站;反之如果吃水量减小,则船只货物减少,标记为-1,表示出站;若吃水量不变,则船只货物不变,标记为0,即船只正常航行或停泊。本段具体代码如下所示,

for i in range(len(df)):  

    cur_pt = [df.loc[i, attr] for attr in attr_list]

    # 5000m / 5km
    if haversine_distance(cur_pt,temp_pt) < 5: # not include into data, the position of adjacent line (in df) is so close, that regard it as the sam
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值