【Matlab】基于改进的 Hausdorf 距离的DBSCAN船舶航迹聚类

该博客介绍了如何使用改进的Hausdorff距离和DBSCAN算法对船舶轨迹进行聚类。通过对AIS数据的预处理和轨迹分割,博主复现了《基于轨迹聚类的船舶异常行为识别研究》中的内容,计算轨迹相似度并提取典型轨迹。结果展示了聚类效果和航迹预测,提供相关代码分享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、模型简介

1.1问题背景

作者复现了《基于轨迹聚类的船舶异常行为识别研究_胡智辉》的文章内容,对模型感兴趣的朋友可以下载文章深入研究。本文主要是分享复现过程中的算法实现。

1.2具体内容

本模型通过处理AIS数据得到船舶轨迹,通过计算改进的 Hausdorff 距离,对轨迹进行DNSCAN聚类,得到不同类型的航迹簇。主要包含以下内容

AIS数据的预处理

船舶轨迹分割

船舶轨迹相似度度量

船舶轨迹表达方式

船舶轨迹相似度量方法

改进的 Hausdorff 距离

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

船舶轨迹聚类及轨迹提取

基于改进DBSCAN算法轨迹聚类

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

船舶典型轨迹的提取

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

船舶轨迹聚类效果对比

在这里插入图片描述
在这里插入图片描述

二、代码分享

具体的代码原理比较繁琐,笔者时间精力有限,难以详尽描述,有需要的可以私信咨询。这里就直接分享部分源码

2.1主函数

% clc
% close all
% clear all
% % %%
% % global noisenum
% % % %% 数据路径
% % % path='AIS1246-1.CSV';
% % % %% 计算H距离
% % % [data1,px,tempMapDis,tempMapV,tempMapHeading]=myHuasdoff(path);
% % % Hdist = (tempMapDis + tempMapV + tempMapHeading) / 3;
% % % %% 取距离中的较小值
% % % for i = 1 : size(Hdist,1)
% % %     for j = i + 1 : size(Hdist,2)
% % %         max1 = Hdist(i,j);
% % %         if max1 < Hdist(j,i)
% % %             max1 = Hdist(j,i);
% % %         end
% % %         Hdist(i,j) = max1;
% % %         Hdist(j,i) = max1;
% % %     end
% % % end
% load data.mat
% %% 设置聚类参数
% eps=0.056;
% MinNum=18;
% %% DBscan 聚类
% cluster_label=DBSCAN(Hdist,eps,MinNum);
% %% 计算聚类数
% cluster_num=max(cluster_label);
% %% 计算轨迹平均位置
% meanpos=zeros(length(cluster_label),2);
% for i=1:length(cluster_label)
%     meanpos(i,1)=mean(data1(data1(:,1)==i,2));
%     meanpos(i,2)=mean(data1(data1(:,1)==i,3));
% end
% %% 画图
% % %% plot trace
% figure
% Plottrace(data1,cluster_label)
% title(sprintf(['DBSCAN聚类结果(航迹示意图) \n邻域距离 = ' num2str(eps) ', 最小样本数 = ' num2str(MinNum) '\n航迹类别:' num2str(cluster_num) '类,噪声航迹:' num2str(noisenum) '条']));
% xlabel('经度')
% ylabel('纬度')
% %% plot meanpos
% % figure
% % Plotmeanpos(meanpos, cluster_label);
% % title(sprintf(['DBSCAN聚类结果(航迹平均坐标示意图) \n邻域距离
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝色洛特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值