Tensorflow和飞桨Paddle的控制流算子设计

一、概览

注:整体方案上尚存在技术疑点,需进一步小组内讨论对齐,避免方案设计上存在后期难以扩展(或解决)的局限性

框架TensorFlow 1.xTensorFlow 2.xPaddle
cond/while
实现机制组合OP (DataFlow)函数式 (Functional)函数式 (Functional)
高阶微分××
并行执行××
图构造复杂简单简单
互相嵌套
维护成本
执行性能一般一般
中间变量保存stack-step_scope
辅助数据结构Frame-ConditionBlock

从接口形态、实现机制上,TensorFlow2.x 的 V2 版本的设计与Paddle 当前的控制流实现非常相似。

以tf.cond为例:

  • V2版会通过atuograph模块将true_fn和false_fn分别转为两个FuncGraph子图
  • 调用gen_functional_ops模块中 If Op去执行
  • If、While的Op注册文件在:tensorflow/core/ops/functional_ops.cc

二、Paddle 现状

1. 上层 API 接口

1.1 cond 接口

接口形态def cond(pred, true_fn=None, false_fn=None, name=None):

执行逻辑:

**

Python

# true 分支子block
true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
with true_cond_block.block():
    origin_true_output = true_fn()

# false 分支子block
false_cond_block = ConditionalBlock([logical_not(pred)], is_scalar_condition=True)
with false_cond_block.block():
    origin_false_output = false_fn()

# 获取输出
mask = cast(pred, dtype='int32')
merge_func = lambda false_var, true_var : select_input([false_var, true_var], mask)
# 多次的TensorCopy
merged_output = map_structure(merge_func, false_output, true_output)

1.2 switch_case 接口

接口形态:def switch_case(branch_index, branch_fns, default=None, name=None):
执行逻辑:

**

Go

# 原理:借助多个cond的组合
pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
false_fn = default
for pred, true_fn in pred_fn_pairs:
    false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

final_fn = false_fn
return final_fn()

1.3 While_loop 接口

接口形态:def while_loop(cond, body, loop_vars, is_test=False, name=None):

执行逻辑:

**

Python

# 构建program
while_loop_block = While(pre_cond, is_test, name)
with while_loop_block.block():
     output_vars = body(*loop_vars)
     now_cond = cond(*output_vars)
     map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
     assign(now_cond, pre_cond)
return loop_vars

2. 存在的问题

2.1 执行性能尚可优化

对于 conditional_block_op:

  • pred 变量存在 GPU→ CPU 的拷贝(执行期 pred 必须在CPU上)

  • pred 会多余地被cast成一个int32类型的 mask Tensor,用于select_input

    • mask 存在 GPU → CPU 的拷贝(执行期 mask 必须在 CPU 上)
  • 每次select_input 都存在一个input → output 的数据copy

    • 对于中间(将亡值)的Tensor,可以直接move Holder来提升性能

对于 switch_case

  • 由于是通过cond接口组合实现,则cong存在的问题,switch_case 都存在

对于while_loop

  • cond 变量存在 GPU→ CPU 的拷贝(执行期 pred 必须在CPU上)

    • 若cond的更新是在GPU上,则每个step都会触发一次拷贝
  • Executor子图执行效率待提升,存在重复的Prepare,且不能复用Pass和Fuse

2.2 细粒度调度执行

目前控制流所有的基础算子OP执行时,都依赖于内部的一个Executor,形式上更像一个大Op,与TF V2版本中的If、While、Case Op比较类似。不支持类似TF V1版本中的细粒度组合算子执行。

局限性在于:

  • 控制流Block内部的OP无法灵活地复用最外层执行器的调度策略
  • 对于多设备、多机扩展性较差,比较难拆分和插入通信Op

三、竞品调研

1. TensorFlow

在 TF 1.x 版本中,主推的是 V1 版本的控制流OP。此版本的 tf.condtf.while 的API是借助多个底层核心的 Low-level Op 来实现的,主要包括:

  • Op的注册源代码文件:tensorflow/core/ops/control_flow_ops.cc
  • OpKernel 定义的文件:tensorflow/core/kernels/control_flow_ops.h

优点:

  • while_loop 支持迭代间的并行执行
  • 适合基于DataFlow的执行模型

缺点:

  • 图构造时非常复杂,尤其在反向、嵌套控制流的场景;Bug不断,维护成本高
  • 无法支持高阶微分
  • 存在一定的性能问题;Dead Tensor 和 Frame引入了额外的开销
  • 很难做图分析(如 auto-clustering)
  • 很难在XLA中进行模式匹配

基于上面的考量,TF引入了 V2 版本的控制流实现:

V2版本的API接口源码文件:tensorflow/python/ops/cond_v2.py
Kernel 定义的源文件:tensorflow/core/kernels/functional_ops.cc

  • IfOp
  • State

优点:

  • 支持高阶微分

  • 更方便地集成XLA/TPU

  • 更简洁的图构造逻辑

    • 更好的错误信息提示和管理
    • BUG更少,更易于维护
  • 简化执行(Simpler execution)

缺点:

  • 基于函数式的Op性能比DataFlow方式要略差(解决方案:lower to V1 版本)

    • 严格执行:即所有的输入必须都是Ready状态后才会触发执行
    • 无迭代间的并行机制
    • 需要特殊逻辑实现剪枝

1.1 核心Op功能

1.1.1 Switch Op

功能:根据 P 值(False/True)将单输入的Tensor d 从某个分支输出,另一个分支输出 Dead Tensor

  • 输入:P (判断量) 、d(输入Tensor)
  • 输出:两个Tensor(分别对应 T、F分支)
  • 反向:Merge(For cond),NextIteration+Merge (For while)

**

Switch(p, d) = (r1, r2) :

r1 = (value(d), p || is_dead(d), tag(d))
r2 = (value(d), !p || is_dead(d), tag(d))

Kernel 实现:

**

C++

void SwitchOp::Compute(OpKernelContext* context) {
  const Tensor& outputPorts = context->input(1);
  
  bool pred = outputPorts.scalar<bool>()();
  int port = (pred) ? 1 : 0;
  if (context->input_is_ref(0)) {  // 传递引用
    context->forward_ref_input_to_ref_output(0, port);
  } else {     // 数据copy
    context->set_output(port, context->input(0));
  }
}
1.1.2 Merge Op

功能:接受多个输入Tensors,输出其中的一个非Dead Tensor。

  • 输入:多个Tensors,但要求有且仅有一个非Dead Tensor(否则存在未定义行为)
  • 输出:唯一的 非Dead Tensor
  • 反向:Switch

**

Bash

Merge(d1, d2) = r :

r = if is_dead(d1) then d2 else d1
1.1.3 Enter Op

功能:将一个输入Tensor 添加到一个执行Frame中(异步地;一个Frame可对应多个Enter,当第一个Enter被执行时,会触发此Frame的实例化)

  • 输入:一个Tensor,将被传入 Execution Frame中使用
  • 输出:一个Tensor
  • 反向:Exit

**

Enter(d, frame_name) = r :

value(r) = value(d)
is_dead(r) = is_dead(d)
tag(r) = tag(d)/frame_name/0

kernel实现:

**

CSS

void EnterOp::Compute(OpKernelContext* context) {
  if (IsRefType(context->input_dtype(0))) {
    context->forward_ref_input_to_ref_output(0, 0);
  } else {
    context->set_output(0, context->input(0));
  }
}
1.1.4 Exit Op

功能:将一个执行Frame 中的Tensor 传出到上级父Frame中,常用于子Frame中传递Tensor到父Frame(一个Frame可以对应多个Exit,当其输入是available时,会立即触发Exit的执行)

  • 输入:子Frame中的源Tensor
  • 输出:传入到父Frame中的 Tensor(对应于更新后的loop_vars中的各个Tensor)
  • 反向:Enter Op

**

Bash

Exit(d) = r :

value(r) = value(d)
is_dead(r) = is_dead(d)
tag(r) = tag1 where tag(d) = tag1/frame_name/n

Kernel实现:

**

CSS

void ExitOp::Compute(OpKernelContext* context) {
  if (IsRefType(context->input_dtype(0))) {
    context->forward_ref_input_to_ref_output(0, 0);
  } else {
    context->set_output(0, context->input(0));
  }
}
1.1.5 NextIteration Op

功能:将当前的执行Frame的 Tensor 传递到下一个迭代(一个执行Frame中可能会有多个NextIteration;当Frame执行第N轮时的第一个NextIteration时,TF就可以开始执行N+1轮的迭代了)

  • 输入:Frame的上一轮待迭代的 Tensor(对应于loop_vars中的各个Tensor)
  • 输出:Frame的下一轮需要的 Tensor
  • 反向:Identity

**

Bash

NextIteration(d) = d1:

value(d1) = value(d)
s_dead(d1) = is_dead(d)
tag(d1) = tag1/frame_name/(n+1) where tag(d) = tag1/frame_name/n

Kernel实现:

**

CSS

void NextIterationOp::Compute(OpKernelContext* context) {
  if (IsRefType(context->input_dtype(0))) {
    context->forward_ref_input_to_ref_output(0, 0);
  } else {
    context->set_output(0, context->input(0));
  }
}
1.1.6 Dead Tensor的作用

在TF中,OpKernel的输入是通过 OpKernelContext::Params 来管理的:

**

C++

class OpKernelContext{
	struct Params {
		// ... (省略其他)
		// Inputs to this op kernel.
		const gtl::InlinedVector<TensorValue, 4>* inputs = nullptr;
		bool is_input_dead = false;
		// ....
	};

// For control flow.
FrameAndIter frame_iter() const { return params_->frame_iter; }
bool is_input_dead() const { return params_->is_input_dead; }

};

// Graph Node 相关
struct NodeItem {
// The index of this node's item in its GraphView.
  int node_id = -1;
  bool is_merge : 1;            // True iff IsMerge(node)
  bool is_enter : 1;            // True iff IsEnter(node)
  // ...
};

// 执行器相关:ExecutorState::PrepareInputs
// Before invoking item->kernel, fills in its "inputs".
{
switch (entry->state) {
  case Entry::State::NO_VALUE:
       // 把的第 i 个输入设置为 空Tensor对象:new Tensor, 1-D, 0 element tensor.
       inp->tensor = const_cast<Tensor*>(kEmptyTensor);
       *is_input_dead = true;
}
}

// 执行器执行流程 ExecutorState::Process, 拓扑序执行
Procss(){
while(){
	 // ..(省略)
	// Only execute this node if it is not dead or it is a send/recv
    // transfer node. For transfer nodes, we need to propagate the "dead"
    // bit even when the node is dead.
    bool launched_asynchronously = false;
    if (tagged_node.get_is_dead() && !item.is_transfer_node) {
      if (outputs.size() < item.num_outputs) outputs.resize(item.num_outputs);
    } else if (TF_PREDICT_FALSE(item.is_noop)) {
      ProcessNoop(stats);
    } else if (item.const_tensor != nullptr && !params.track_allocations) {
      ProcessConstTensor(item, &outputs, stats);
    } else {
      // Prepares inputs.
      bool is_input_dead = false;
      s = PrepareInputs(item, first_input, &inputs, &input_alloc_attrs,   <-------这里
                        &is_input_dead);
      if (!s.ok()) {
        // Clear inputs.
        const int num_inputs = item.num_inputs;
        for (int i = 0; i < num_inputs; ++i) {
          (first_input + i)->ClearVal();
        }
        propagator_.MaybeMarkCompleted(tagged_node);
        // Continue to process the nodes in 'inline_ready'.
        completed = NodeDone(s, &ready, stats, &inline_ready);
        continue;
      }
      
	if (item.kernel_is_async) {   <----异步
        ProcessAsync(item, params, tagged_node, first_input, stats);
        launched_asynchronously = true;
      } else {    <------- 同步
        s = ProcessSync(item, &params, &outputs, stats);
      }

}
}

对于所有 非控制流的OP,执行的逻辑是:

**

Python

Op(d1, …, dm) = (r1, …, rn) :

value(ri) = Op.Compute(value(d1), …, value(dm)) if !is_dead(ri)
is_dead(ri) = any(is_dead(d1), … is_dead(dm)), for all i
tag(ri) = tag(d1), for all i

优点:

  • Tensor的 Dead 状态可以传递,利于支持多机的控制流实现
  • 非控制流的Op的输入必须满足都不是Dead Tensor才会真正执行

缺点:

  • is_dead() 会引入额外的判断开销,有损性能
  • 所有的OP都要维护 is_dead 逻辑,耦合性强

对于多机的 SendRecv 两个OP,也会对 Dead Tensor 进行处理(只有Send处理了):

1.2 Cond 高层API实现

接口源码实现:tensorflow/python/ops/control_flow_ops.py

**

CSS

def cond(pred, true_fn, false_fn, name):
    with ops.name_scope(name, "cond", [pred]):
         p_2, p_1 = switch(pred, pred)
         pivot_1 = array_ops.identity(p_1, name="switch_t")
         pivot_2 = array_ops.identity(p_2, name="switch_f")
         pred = array_ops.identity(pred, name="pred_id")
		 
		 context_t = CondContext(pred, pivot_1, branch=1)
		 try:
             context_t.Enter()
             orig_res_t, res_t = context_t.BuildCondBranch(true_fn)
             if orig_res_t is None:
                 raise ValueError("'true_fn' must have a return value.")
             context_t.ExitResult(res_t)
         finally:
             context_t.Exit()
         
         context_f = CondContext(pred, pivot_2, branch=0)
         try:
             context_f.Enter()
             orig_res_f, res_f = context_t.BuildCondBranch(false_fn)
             if orig_res_f is None:
                 raise ValueError("'false_fn' must have a return value.")
             context_f.ExitResult(res_f)
         finally:
             context_f.Exit()

         res_t_flat = nest.flatten(res_t, expand_composites=True)
         res_f_flat = nest.flatten(res_f, expand_composites=True)
         merges = [merge(pair)[0] for pair in zip(res_f_flat, res_t_flat)]
         
         return merges
1.2.1 Auto-Gradient

反向的形式:cond(p, g_fn1, g_fn2)

1.2.2 V2 版本的If Op

V2 版本中,TF在后端实现了一个IfOp,用于执行前端传递过来的 true_fn 和 false_fn。

Kernel 源码定义文件:tensorflow/core/kernels/functional_ops.cc

  • 继承自 AsyncOpKernel,重写了ComputeAsync 函数
  • 实际执行逻辑封装在 State->Start()

State 是一个内部类,用于If/While/Case Op的实际执行:FunctionLibraryRuntime

1.3 While 高层API实现

1.3.x Auto-Gradient

反向的形式:

**

Python

def pred(i,_): return i < N
while_loop(pred, g_body, [0] + g_vars)

需要处理的关键点:

  • 反向G(Body)中可能会用到前向产生的中间Tensor,需要把每一步的中间Tensor都记录下来

    • 引入了异步的内存交换技术,解决GPU上内存资源过度占用问题
  • 在静态组网期间,N是未知的(这个会影响什么呢?)

对与上述第一点,TF引入了stack的概念,将反向必须的中间变量随着iter入栈。(TF 将push与Op执行异步了起来,避免stack引入过多的性能开销)

对于上述第二点,TF在while_loop的前向中引入了子图,专门做N的动态计算,然后可以自动生成反向:

1.4 多硬件的支持

TF 借助 device placement自动地对graph进行子图切分,每种设备上一个子图。在不同设备上子图的有连接的边上,分别插入成对的sendrecv算子(通过unique key关联)

对于不含控制流的Graph,只要按照拓扑序将所有的OpNode都执行一遍即可。但是控制流引入了一些新的变化:

  • 每个Op可能被执行多次,也可能被执行0次

  • Tensor 需要额外的信息标记,在TF中被表示为元组:(value, is_dead,tag)

    • value:Tensor实际的数据
    • is_dead:是否来自一个未被执行的分支
    • tag:唯一标识?也用来标记send/recv的成对信息(因为他俩可能要执行多次,必须保证执行的次数是对应的)

1.5 多机的支持

1.5.1 Switch 多机

如下图的Switch,设备A中若Send是False分支,则直接可以产出一个Dead Tensor,只需要将Dead状态传递到设备B。此时设备B上Recv Op的下游Op可以立即执行(传递Dead)

1.5.2 While 多机

对于多机While_loop,简单的插入成对的 Send-Recv 算子并不能实现多机间执行。因为设备B并不知道Op是来自一个while的body_func,因此可能只会执行一次就退出了,无法实现循环的效果。

解决方案:TF在设备B中引入了一个控制流状态机,其中Enter固定接受输入0。

下面举一个执行 0 次的栗子:

  • 设备A上,从Enter开始执行,因为 P 是False,所以Switch的False分支直接输出loop_vars到Exit,退出循环。同时Switch的True分支关联一个Send,发送Dead Tensor;P 也关联一个Send,发送值为False的 非Dead Tensor
  • 设备B上,也开始从Enter开始执行,继而执行Merge(随后触发两个Recv的执行),Switch的Recv接受False Tensor,导致Next为Dead Tensor;Op的Recv接受Dead Tensor,传播状态到Send。此时设备B已无Op可执行
  • 回到设备A, Next的Recv接受Dead Tensor,开始执行Next,此时设备A已无Op可执行
  • 注意:图中的虚线表示依赖边;Next遇到Dead Tensor后会停止此状态的传播

嵌套的while如何插入control-loop状态机?

TODO: 需要厘清方案

1.5.3 对于并行机制的优势
  • 上述设备B一旦接受到传过来的 P 变量就可以开启下一轮迭代或执行Exit。
  • 两个设备可以同时执行同一个Loop的不同轮次的body_fn
  • 多机之间开销主要在于需要等待前序设备产出的 P 变量;由于并行机制,这个部分等待可以overlap起来(???)

四、技术方案

此方案主要涉及对底层的控制流Op执行机制重新设计,拆分为细粒度的组合Op

1. Switch

1. 基础算子 OP 扩展

新方案依赖 6 个基础的算子 OP:

前向算子特点反向需求的Op计划
enter单输入、单输出exitcond、while一期
exit单输入、单输出entercond、while一期
switch双输入、双输出merge 或 next_iteration + mergecond、while一期
merge多输入、单输出switchcond、while一期
next_iteration单输入、单输出identitywhile二期
identity单输入、单输出-next_iteration二期

2. Dead Tensor 引入?

由于 switch 和 merge 算子的引入,导致Op的输出类型新增了一个 Dead 状态,用于下游False 分支的 伪执行

但若在框架侧所有的OP执行中都引入一个Dead Tensor,影响面巨大。且从TF的历史经验来看,这个会引入些许性能开销。

Question:是否可以在满足现有技术方案设计需求的前提下,避免对 Dead Tensor的引入?

TODO:调研中(目前暂无明确的替代方案)

3. 互相嵌套机制

支持不同控制流相互嵌套是框架完备性的重要诉求。Paddle目前的实现是通过Block的嵌套机制来实现的,逻辑简洁,易于维护。

从目前TF的材料和经验来看,V1 版本虽然也支持了互相嵌套机制,但付出了比较大的代价。V1版本在遇到嵌套 case的场景时,维护成本与嵌套层级非线性递增,BUG可能性较高(TF内部视频提到此点)

4. 接口实现

cond_op 为例:

CSS

def cond(pred, true_fn, false_fn, name):
    with static.name_scope(name):
         p_2, p_1 = control_flow.switch(pred, pred)
         pivot_1 = control_flow.identity(p_1, name="switch_t")
         pivot_2 = control_flow.identity(p_2, name="switch_f")
         pred = control_flow.identity(pred, name="pred_id")
         context_t = CondContext(pred, pivot_1, branch=1)
        with context_t:
             orig_res_t, res_t = context_t.BuildCondBranch(true_fn)
             context_t.ExitResult(res_t)

         context_f = CondContext(pred, pivot_2, branch=0)
         with context_f:
             orig_res_f, res_f = context_t.BuildCondBranch(false_fn)
             context_f.ExitResult(res_f)
          
         res_t_flat = nest.flatten(res_t, expand_composites=True)
         res_f_flat = nest.flatten(res_f, expand_composites=True)
         merges = [control_flow.merge(pair)[0] for pair in zip(res_f_flat, res_t_flat)]
         return merges

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

  • 20
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值