本期为大家介绍如何本地部署Dify,保证新手小白也能学会。
本期使用到的工具包括Docker和Dify, 其中Dify 是一个开源的大语言模型(LLM)应用开发平台,与Coze类似,它也是旨在帮助开发者快速构建和运营生成式 AI 应用,Dify支持智能体(Agent) 构建、工作流(Workflow)编排、RAG 检索增强生成、模型管理和知识库集成等功能。Docker是一个开源的应用容器引擎,它允许开发者打包他们的应用以及应用的依赖包到一个可移植的容器中,简单来说Docker就是一个部署应用的容器,通过Docker部署Dify,就是要把Dify部署到Docker提供的容器里面。
本期将演示如何安装Docker、安装Docker报错的解决办法、注册和登录Docker、如何部署Dify,配置Docker镜像以及Dify的简单使用。
1、安装Docker
首先打开Docker官网,点击按钮,选择Windows版本的Docker安装包,点击下载。
下载完成后,打开安装包,一路点击下一步即可,该过程中Docker会自动拉取所需的内容。完成后打开cmd(cmd打开方法请看图),输入docker,如果下方出现Docker的命令提示就代表安装成功了。
2、安装Docker报错的解决办法
安装完Docker后可能会出现打开报错的情况,报错主要是提示WSL版本过低、WSL更新失败或者没有WSL,此时需根据提示针对性解决。
如果提示WSL版本过低或者更新失败,则打开cmd,输入wsl --update
如果提示没有WSL,则打开cmd,输入wsl --install
此时基本就完成了Docker的安装,下一步可以根据自身需求选择注册登录Docker,如果没有复杂需求其实可以选择不登录,对于部署Dify来说,即便不登录也可以。如果是有加入团队、访问组织内部资源以及使用付费订阅功能的需求,则需注册登录。
3、注册和登录Docker
点击软件右上角sign in,会弹出一个网页让登录
如果没有账号可以点击下方sign up注册
进入注册页面输入信息,并注册
完成之后会让收一封邮件以验证邮箱,登录刚才填写的邮箱,点击蓝色按钮验证即可。
验证完成回到软件再次点击sign in登录就行。
需要注意的是,如果不会科学上网(VPN)的话,以上提到的网页可能无法访问。
4、部署Dify
首先进入Dify官网,点击GitHub,在GitHub页面中点击Download ZIP下载项目文件。注意:最近很多网友反馈无法正常访问GitHub,因此建议科学上网(VPN)访问,如果你不会也没关系,我已经将Dify的项目文件上传到了网盘,可以直接私信回复“1234”获取。
下载下来的文件是一个叫dify-main的压缩包,解压并进入到docker文件夹内,把.env.example文件名改为.env
完成文件改名后,在文件夹内打开cmd,注意一定是在文件夹内打开,或者也可以通过之前的方式打开cmd,然后通过cd /d +路径 的方式转到该文件夹。在cmd中输入docker compose up -d并回车,通过docker compose部署Dify,Docker会自动拉取Dify所需的依赖。
等到依赖全部安装完成,就完成了Dify的部署。需要注意的是这一步可能因为Docker镜像的原因出现问题,因为没有配置国内镜像的原因导致在拉取所需内容的时候一直超时或者拉取到一半出现报错,为了解决这个问题需要配置一下Docker镜像。
5、配置Docker镜像
打开Docker的软件界面,点击设置,进入到Docker Engine,在右边添加以下内容,输入完成后点击应用(Apply&restart) 此时再在cmd中输入docker compose up -d命令,等待安装完成即可。
"registry-mirrors": [
"https://registry.docker-cn.com",
"https://s4uv0fem.mirror.aliyuncs.com",
"https://docker.1ms.run",
"https://registry.dockermirror.com",
"https://docker.m.daocloud.io",
"https://docker.kubesre.xyz",
"https://docker.mirrors.ustc.edu.cn",
"https://docker.1panel.live",
"https://docker.kejilion.pro",
"https://dockercf.jsdelivr.fyi",
"https://docker.jsdelivr.fyi",
"https://dockertest.jsdelivr.fyi",
"https://hub.littlediary.cn",
"https://proxy.1panel.live",
"https://docker.1panelproxy.com",
"https://image.cloudlayer.icu",
"https://docker.1panel.top",
"https://docker.anye.in",
"https://docker-0.unsee.tech",
"https://hub.rat.dev",
"https://hub3.nat.tf",
"https://docker.1ms.run",
"https://func.ink",
"https://a.ussh.net",
"https://docker.hlmirror.com",
"https://lispy.org",
"https://docker.yomansunter.com",
"https://docker.xuanyuan.me",
"https://docker.mybacc.com",
"https://dytt.online",
"https://docker.xiaogenban1993.com",
"https://dockerpull.cn",
"https://docker.zhai.cm",
"https://dockerhub.websoft9.com",
"https://dockerpull.pw",
"https://docker-mirror.aigc2d.com",
"https://docker.sunzishaokao.com",
"https://docker.melikeme.cn"
]
6、Dify的简单应用
安装完成后,在浏览器输入http://localhost/install访问并配置Dify,主要是注册和登录Dify。
登录完成后,进入设置,找到模型供应商,由于是简单应用演示,因此选择在线模型进行演示。在模型供应商中找到智谱AI(zhipu AI)并安装。
在浏览器中访问智谱清言的开发者平台,创建API KEY 开发者平台地址:
https://bigmodel.cn/usercenter/proj-mgmt/apikeys
复制创建的API KEY,回到刚才安装的智谱AI,点击设置,将API KEY粘贴进去并保存即可。
回到Dify的“工作室”,点击创建空白应用可以创建新的应用,此处以聊天助手为例,选择聊天助手,输入名称点击创建。
在编排页面右上角可以选择模型,左边可以对提示词、变量和知识库等进行添加和编排,右边是交互对话框,下方输入问题,发送后上方会展示回答。
后话
后续使用的前置条件:
因为是通过Docker部署的Dify,Docker作为应用容器,使用时需要先打开Docker,并且后续每次使用Dify也需要先打开Docker。
模型配置:
本期内容由于是简要介绍Dify使用,因此选择了联网的模型,实际上研究本地部署的使用者出于对数据的保密,在选择模型时也需要使用本地模型,下期将介绍如何在Dify中使用本地大模型。
深度使用:
本期内容仅对Dify的使用做了简要介绍,后续将结合本地大模型对Dify的使用进行深度介绍。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓