说句实在的,很多人以为学大模型就是搞点提示词、调个 API,就能搞定一切。但真想“弄懂它”,甚至“做出点东西”来,不啃几本靠谱的书,真的不行。
我一开始也是刷了一堆教程,收藏了几十个 AI 工具帖,但一到自己动手就抓瞎。直到我静下心认真啃完这些书,才发现——原来很多问题,书里早就帮你解答了。
这几本书是一路上踩坑总结的「大模型学习黄金书单」,从编程入门,到深度学习基础,再到 LLM 原理、落地应用,完整一条线,不忽悠、不烧香,适合想认真搞事的朋友!
#1 编程语言基础
别的不说,谁学 Python 没啃过“蟒蛇书”?
Amazon、京东编程类榜首,影响 250 万读者,可不是吹的。
📌 为什么推荐它?
-
真·零基础:没有废话,从基础语法讲起,顺着学非常顺畅
-
实用项目:教你做小游戏、数据可视化、简单网页,入门友好还带成就感
-
附赠资源超丰富:代码 + 视频 + PPT + 速查手册,一本顶好几本
💬 适合人群:刚入门编程/转行/准备进阶 AI 的基础补课选手
《 Python编程:从入门到实践 (第3版)》
[美]埃里克·马瑟斯 | 著
袁国忠 | 译
Python 入门圣经,影响全球超过 250 万读者,长居 Amazon、京东等网店编程类图书榜首,真正零基础,附赠随书代码+配套视频讲解+速查手册,自学无压力。
#2 深度学习知识
Deep Learning Knowledge
被称为“鱼书”,是很多人从“听说深度学习”到“我能自己写个神经网络”的第一本书。
📌 它的厉害之处在于:
-
内容通俗不烧脑:作者是个讲课极清楚的人,逻辑特别顺
-
不靠太多框架:一步步带你手写出基础神经网络
-
从数学推导到实战实现,全链路打通
💬 看完之后你就知道,深度学习不是“神秘黑箱”,而是可以拆解、理解、控制的东西。
《深度学习入门:基于Python的理论与实现》
斋藤康毅 | 著
陆宇杰 | 译
深度学习“鱼书”,畅销 10 万册,相比 AI 圣经“花书”,本书更合适入门。本书深入浅出地剖析了深度学习的原理和相关技术,书中使用 Python 3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。
#3 大模型基础知识
Basic Knowledge of LLM
这两本书我建议配套看!
✅ 《大模型技术30讲》:由 GitHub 爆火项目作者塞巴斯蒂安·拉施卡创作,采用 Q&A 形式,把最重要的大模型知识点都拆解了。每一讲都讲得很实,有图、有公式、有代码,还有练习题检验学习成果。
✅ 《从零构建大模型》:这本更像是“操作手册”,教你怎么从头构建一个大模型,从数据预处理、预训练、微调、部署全流程都讲。还融入了 DeepSeek 等当下热门模型的实战经验,超级新、超级实用!
💬 如果你不是只想用大模型,而是想做点自己的东西(副业/创业/项目),那这两本必须啃下来。
《大模型技术30讲》
塞巴斯蒂安·拉施卡|著
叶文滔 | 译
GitHub 项目 LLMs-from-scratch(star数43k)作者、大模型独角兽公司 Lightning AI 工程师倾力打造,全书采用独特的一问一答式风格,探讨了当今机器学习和人工智能领域中最重要的 30 个问题,旨在帮助读者了解最新的技术进展。
内容共分为五个部分:神经网络与深度学习、计算机视觉、自然语言处理、生产与部署、预测性能与模型评测。每一章都围绕一个问题展开,不仅针对问题做出了相应的解释,并配有若干图表,还给出了练习供读者检验自身是否已理解所学内容。
《从零构建大模型》
塞巴斯蒂安·拉施卡|著
覃立波,冯骁骋,刘乾 | 译
如何从零开始构建大模型的指南,由畅销书作家塞巴斯蒂安•拉施卡撰写,通过清晰的文字、图表和实例,逐步指导读者创建自己的大模型。在本书中,读者将学习如何规划和编写大模型的各个组成部分、为大模型训练准备适当的数据集、进行通用语料库的预训练,以及定制特定任务的微调。此外,本书还将探讨如何利用人工反馈确保大模型遵循指令,以及如何将预训练权重加载到大模型中。还有惊喜彩蛋 DeepSeek,作者深入解析构建与优化推理模型的方法和策略。
#4 大模型开发及应用
Get Started with LLM Applications
✅ 《大模型应用开发极简入门》:非常适合“我就想做点应用出来”的朋友。一步步教你做 RAG 系统、问答机器人,还教你对接 GPT-4、ChatGPT,理解 prompt engineering,不讲玄学,直接带你上手。
✅ 《一本书玩转 DeepSeek》:作者是 AI 圈非常活跃的“花生”老师,书里全是能落地的案例,涵盖副业、办公、数据分析、企业级场景等 13 大模块,90 个实用场景,说白了就是“大模型能干啥”,看完心里贼有底。
💬 如果你已经在用 AI 工具,想更进一步做点像样的“作品”,这两本堪称秘笈。
《大模型应用开发极简入门:基于GPT-4和ChatGPT(第2版)》
奥利维耶·卡埃朗,[法] 玛丽–艾丽斯·布莱特 | 著
何文斯 | 译
深受读者喜爱的大模型应用开发图书升级版,作者为初学者提供了一份清晰、全面的“最小可用知识”,带领你快速了解 GPT-4 和 ChatGPT 的工作原理及优势,并在此基础上使用流行的 Python 编程语言构建大模型应用。
升级版在旧版的基础上进行了全面更新,融入了大模型应用开发的最新进展,比如 RAG、GPT-4 新特性的应用解析等。随书赠 DeepSeek × Dify 应用开发案例,书中还提供了大量简单易学的示例,帮你理解相关概念并将其应用在自己的项目中。
学会用 AI 是一回事,能真正理解、掌握、驾驭 AI,是另一回事。今天推荐的这些书,不是为了让大家“屯书”,而是它们真的能让你走得更远。
甚至不用全都立刻看完,但你至少得知道,这条路上你有这些“可靠的参考系”。码住、慢慢啃,你一定能走出自己的 AI 路。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓