【Datawhale AI 夏令营】电力需求预测 Task02
一.目标
完成task01最基础的跑通baseline操作后,task02的目标就是使用进阶的机器学习模型lightgbm来解决问题,以达到更好的预测效果。
通过本次学习,可以了解:
- 用数据集绘制柱状图和折线图
- 使用时间序列数据构建历史平移特征和窗口统计特征
- 使用lightgbm进行训练并预测
二.基础概念
1.LightGBM
LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。
LightGBM 框架中还包括随机森林和逻辑回归等模型。通常应用于二分类、多分类和排序等场景。
三.代码
本次测试主要是在飞桨AI Studio星河社区进行运行的
链接: link
1.数据集选择
当你登录(注册)好账号后,本次测试需要数据集,所以需要我们手动去选择添加对应的数据集。
- 点击项目,选择新建项目中的Notebook
- 点击添加数据集,搜索电力需求预测挑战赛-数据集
2.模块导入
- 在导入模块之前,需要先安装上LightGBM,输入下述代码,之后运行,即可安装。
pip install lightgbm==3.3.0
- 导入所需模块
import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')
3.读取训练数据和测试数据
根据个人相关数据库的地址所在(可能提供的源代码的地址和你的实际地址有出入),可以对下述中的地址进行修改
train = pd.read_csv('./data/data283931/train.csv')
test = pd.read_csv('./data/data283931/test.csv')
数据介绍:
- 其中id为房屋id;
- dt为日标识,训练数据dt最小为11,不同id对应序列长度不同;
- type为房屋类型,通常而言不同类型的房屋整体消耗存在比较大的差异;
- target为实际电力消耗,也是我们的本次比赛的预测目标。
4.可视化分析
- 不同type类型对应target的柱状图
import matplotlib.pyplot as plt
# 不同type类型对应target的柱状图
type_target_df = train.groupby('type')['target'].mean().reset_index()
plt.figure(figsize=(8, 4))
plt.bar(type_target_df['type'], type_target_df['target'], color=['blue', 'green'])
plt.xlabel('Type')
plt.ylabel('Average Target Value')
plt.title('Bar Chart of Target by Type')
plt.show()
- id为00037f39cf的按dt为序列关于target的折线图
specific_id_df = train[train['id'] == '00037f39cf']
plt.figure(figsize=(10, 5))
plt.plot(specific_id_df['dt'], specific_id_df['target'], marker='o', linestyle='-')
plt.xlabel('DateTime')
plt.ylabel('Target Value')
plt.title("Line Chart of Target for ID '00037f39cf'")
plt.show()
5.特征工程(历史平移特征和窗口统计特征)
(1)历史平移特征
通过历史平移获取上个阶段的信息;如下图所示,可以将d-1时间的信息给到d时间,d时间信息给到d+1时间,这样就实现了平移一个单位的特征构建。
(2)窗口统计特征
窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。如下图所示,可以将d时刻之前的三个时间单位的信息进行统计构建特征给我d时刻。
(3)代码
# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)
# 历史平移
for i in range(10,30):
data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3
# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)
# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]
6.模型训练与测试集预测
本次测试使用的是LightGBM模型,同时结合上述的历史平移特征和窗口平移特征。
注意:由于数据具有时序性,所以要严格按照时序进行切分
- 选择原始给出训练数据集中dt为30之后的数据作为训练数据,之前的数据作为验证数据,
- 上述是为了防止出现数据穿越问题(不使用未来数据预测历史数据)
def time_model(lgb, train_df, test_df, cols):
# 训练集和验证集切分
trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
# 构建模型输入数据
train_matrix = lgb.Dataset(trn_x, label=trn_y)
valid_matrix = lgb.Dataset(val_x, label=val_y)
# lightgbm参数
lgb_params = {
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': 'mse',
'min_child_weight': 5,
'num_leaves': 2 ** 5,
'lambda_l2': 10,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'bagging_freq': 4,
'learning_rate': 0.05,
'seed': 2024,
'nthread' : 16,
'verbose' : -1,
}
# 训练模型
model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix],
categorical_feature=[], verbose_eval=500, early_stopping_rounds=500)
# 验证集和测试集结果预测
val_pred = model.predict(val_x, num_iteration=model.best_iteration)
test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
# 离线分数评估
score = mean_squared_error(val_pred, val_y)
print(score)
return val_pred, test_pred
lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)
# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)
三.改进
1.
第一次,将上述代码进行评分后,分数在259.966,于是我想应该如何把这个分数降低(分数越低证明这个模型越好)。
我主要是从特征工程那个地方入手的。特征工程中窗口统计特征部分是通过求连续3个窗口的均值,所有我决定改成求连续7个窗口的均值(将特征工程中窗口统计部分的代码改成如下)
# 窗口统计
data[f'win7_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target'] + data['last13_target'] + data['last14_target'] + data['last15_target'] + data['last16_target']) / 7
但是我发现适得其反,分数反而增大了。
于是我又换了种策略。
2.
我将求连续7个窗口的均值改成了求连续5个窗口的样本方差,如下述
# 窗口统计
average = (data['last10_target'] + data['last11_target'] + data['last12_target'] + data['last13_target'] + data['last14_target']) / 5
data[f'win5_var_target'] = ((data['last10_target']-average)**2 + (data['last11_target']-average)**2 + (data['last12_target']-average)**2 + (data['last13_target']-average)**2 + (data['last14_target']-average)**2) / 4
结果评分果然下降了
于是我又将求连续5个窗口的样本方差改成7个
# 窗口统计
average = (data['last10_target'] + data['last11_target'] + data['last12_target'] + data['last13_target'] + data['last14_target'] + data['last15_target'] + data['last16_target']) / 7
data[f'win7_var_target'] = ((data['last10_target']-average)**2 + (data['last11_target']-average)**2 + (data['last12_target']-average)**2 + (data['last13_target']-average)**2 + (data['last14_target']-average)**2 + (data['last15_target']-average)**2 + (data['last16_target']-average)**2 ) / 6
但是结果却不尽人意,增大了
上述即是我做的所有测试和改动,之后就没有了。