TensorFlow 安装GPU版本

 

1、CUDA的下载,官网下载CUDA版本一般是最新版本,但是TensorFlow版本与CUDA版本可能不兼容,CUDA其他版本下载地址是https://developer.nvidia.com/cuda-toolkit-archive ,可以根据自己的需要下载CUDA的版本。我下载的是CUDA9.0

2、双击可执行文件,选择解压路径,点击OK

 

3、正在解压

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4、检查系统的兼容性

 

5、点击继续

 

6、点击同意并继续

 

7、选择精简安装选项,点击下一步

 

8、正在安装

 

 

 

9、点击下一步结束安装

 

10、点击关闭

 

11、在dos窗口中输入nvcc -V,如果输出是cuda版本信息,则说明安装成功

 

2、下载CUDNN7.0,因为这样才能跟CUDA进行环境的搭建,下载地址是:https://developer.nvidia.com/rdp/cudnn-archive,在下载CUDNN7.0之前,会提示你注册一个账号,输入邮箱等相关注册信息注册一个账号,然后用注册的账号进行登录就可以进行下载。

3、将下载的CUDNNV7.0解压,打开里面的文件夹,找到里面的bin、include、lib文件夹,将这三个文件夹复制到安装CUDA9.0的路径覆盖原有的文件。本机的安装路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0

 

4、本机装的是anaconda3.4.1,打开dos窗口,通过调用以下命令创建名为TensorFlow的conda环境

C:\Users\Administrator> conda create -n tensorflow pip python=3.5,命令执行完后在输入框输入y

4、输入y后正在下载一些需要的包,下载完成后输入activate tensorflow激活conda环境

 

5、发出相应的命令在conda环境中安装TensorFlow,因为本机安装的是GPU版,所以输入如下命令:

pip install --ignore-installed --upgrade tensorflow-gpu

 

 

 

6、安装完成后,输入黄色字体提示的命令,python -m pip install --upgrade pip ,等待命令执行完毕即可。

 

7、验证TensorFlow是否安装成功

本机是通过anaconda安装的,首先要激活anaconda环境,打开doc窗口,输入激活命令activate tensorflow,然后从shell中调用Python,在dos窗口中输入Python即可调用成功。

8、在Python交互式解释器中输入以下几行代码

>>> import tensorflow as tf

>>>hello = tf.constant('Hello,Tensorflow!')

>>>sess = tf.Session()

>>>print(sess.run(hello))

如果窗口中输出是b'Hello,Tensorflow',则说明已经成功。

 

 

9、在Pycharm中判断TensorFlow是GPU版本还是CPU版本只需运行如下程序,然后就可以在输出窗口中看到结果,下图所示的就说明计算机安装的是GPU版本。

import numpy

import tensorflow as tf

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')

b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')

c = tf.matmul(a, b)

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

print(sess.run(c))

 

10、验证cuDNN的配置

打开anaconda Prompt,输入Python,再输入import TensorFlow,如果没有提示没有安装CUDNN,则cuDNN配置成功了。

 

 

展开阅读全文

没有更多推荐了,返回首页