转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526 by---cxlove
题目:给出N个房间,每个房间的钥匙随机放在某个房间内,概率相同。有K次炸门的机会,求能进入所有房间的可能性为多大。
http://acm.hdu.edu.cn/showproblem.php?pid=3625
钥匙与门的对应关系呈现出环。打开一个门之后,环内的所有房间都可以进入。也就是说N个房间形成1--K个环的可能有多大。N个房间N个钥匙的总数为N!。
之后是求N个房间形成i个环的总数。
题目还有个特殊要求,不能破1号的门。
也就是说1号不能独立成环,否则就失败。
第一类斯特林数S(P,K)=(P-1)*S(P-1,K)+S(P-1,K-1)表示的正是N个元素形个K个非空循环排列的方法数。
枚举形成的环,但是要除掉1号独立成环的可能。
S(N,M)-S(N-1,M-1),N个元素形成 M个环,减去除了1之外的N-1个元素形成M-1个环,也就是1独立成环。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define eps 1e-7
#define LL long long
using namespace std;
LL fac[21]={1};
LL stir1[21][21];
int main(){
for(int i=1;i<21;i++)
fac[i]=fac[i-1]*i;
for(int i=1;i<=20;i++){
stir1[i][0]=0;
stir1[i][i]=1;
for(int j=1;j<i;j++)
stir1[i][j]=stir1[i-1][j-1]+(i-1)*stir1[i-1][j];
}
int t,n,k;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);
if(n==1||k==0){
printf("0.0000\n");
continue;
}
LL sum=0;
for(int i=1;i<=k;i++)
sum+=stir1[n][i]-stir1[n-1][i-1];
printf("%.4f\n",(double)sum/fac[n]);
}
return 0;
}