斯特林gongshi

普通计算时:


N!=1*2*3*4*5*............*N;


如果要计算N!后得到的数字,则我们可以知道其等于lgN!+1


lgN!=lg1+lg2+lg3+lg4+lg5+....................+lgN;


但是当N很大的时候,我们可以通过数学公式进行优化:(即Stirling公式)


N!=sqrt(2*pi*N)*(N/e)^N;(pi=3.1415926=acos(-1.0),e=2.718)


lgN!=(lg(2*pi)+lgN)/2+N*(lgN-lge);


斯特林公式可以用来估算某数的大小结合lg可以估算某数的位数,或者可以估算某数的阶乘是另一个数的倍数。

链接:https://www.nowcoder.com/acm/contest/75/A
来源:牛客网

题目描述

夫夫有一天对一个数有多少位数感兴趣,但是他又不想跟凡夫俗子一样,
所以他想知道给一个整数n,求n!的在8进制下的位数是多少位。

输入描述:

第一行是一个整数t(0<t<=1000000)(表示t组数据)
接下来t行,每一行有一个整数n(0<=n<=10000000)

输出描述:

输出n!在8进制下的位数。
©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值