斯特林公式

斯特林公式

n ! = 2 π n ( n e ) n n!=\sqrt{2\pi n}\left(\frac{n}{e} \right )^{n} n!=2πn (en)n
证明:
ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ ( − 1 < x ≤ 1 ) ⋯ ( 1 ) \ln \left(1+x \right )=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+ \cdots \left(-1<x\le 1 \right )\cdots \left(1 \right ) ln(1+x)=x2x2+3x34x4+(1<x1)(1)

ln ⁡ ( 1 − x ) = − x − x 2 2 − x 3 3 − x 4 4 − ⋯ ( − 1 ≤ x < 1 ) ⋯ ( 2 ) \ln \left(1-x \right )=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}- \cdots \left(-1\le x<1 \right )\cdots\left(2 \right ) ln(1x)=x2x23x34x4(1x<1)(2)
( 1 ) − ( 2 ) ln ⁡ ( 1 + x ) − ln ⁡ ( 1 − x ) = ln ⁡ ( 1 + x 1 − x ) = 2 ( x + x 3 3 ⋯   ) ( − 1 < x < 1 ) \left(1 \right )-\left(2 \right )\ln\left(1+x \right )-\ln\left(1-x \right )=\ln\left(\frac{1+x}{1-x} \right )=2\left(x+\frac{x^{3}}{3}\cdots \right )(-1<x<1) (1)(2)ln(1+x)ln(1x)=ln(1x1+x)=2(x+3x3)(1<x<1)
x = 1 2 n + 1 x=\frac{1}{2n+1} x=2n+11
n ≥ 0 n\geq0 n0
2 n + 1 ≥ 1 2n+1\geq 1 2n+11
0 < x ≤ 1 0< x\leq 1 0<x1
1 + x 1 − x = n + 1 n ln ⁡ ( n + 1 n ) = 2 ( 1 2 n + 1 + 1 3 ( 2 n + 1 ) 3 + 1 5 ( 2 n + 1 ) 5 + ⋯   ) ln ⁡ ( n + 1 n ) 2 n + 1 2 = 1 + 1 3 ( 2 n + 1 ) 2 + 1 5 ( 2 n + 1 ) 4 + ⋯ 1 < ln ⁡ ( n + 1 n ) 2 n + 1 2 ≤ 1 + 1 3 ( 1 ( 2 n + 1 ) 2 + 1 ( 2 n + 1 ) 4 ⋯   ) \begin{aligned} \frac{1+x}{1-x}&=\frac{n+1}{n}\\ \ln\left(\frac{n+1}{n} \right )&=2\left(\frac{1}{2n+1}+\frac{1}{3\left(2n+1 \right )^{3}} +\frac{1}{5\left(2n+1 \right )^{5}}+\cdots \right )\\ \ln\left(\frac{n+1}{n} \right )\frac{2n+1}{2}&=1+\frac{1}{3\left(2n+1 \right )^{2}} +\frac{1}{5\left(2n+1 \right )^{4}}+\cdots \end{aligned} \\ 1<\ln\left(\frac{n+1}{n} \right )\frac{2n+1}{2}\leq 1+\frac{1}{3}\left(\frac{1}{\left ( 2n+1 \right )^{2}} +\frac{1}{\left ( 2n+1 \right )^{4}}\cdots \right ) 1x1+xln(nn+1)ln(nn+1)22n+1=nn+1=2(2n+11+3(2n+1)31+5(2n+1)51+)=1+3(2n+1)21+5(2n+1)41+1<ln(nn+1)22n+11+31((2n+1)21+(2n+1)41)
1 + 1 3 ( 1 ( 2 n + 1 ) 2 + 1 ( 2 n + 1 ) 4 + ⋯   ) = 1 + 1 3 ( 1 ( 2 n + 1 ) 2 1 − 1 ( 2 n + 1 ) 2 ) = 1 + 1 3 1 ( 2 n + 1 ) 2 − 1 = 1 + 1 3    1 2 n ( 2 n + 2 ) = 1 + 1 12 n ( n + 1 ) \begin{aligned} &\quad 1+\frac{1}{3}\left(\frac{1}{\left(2n+1 \right )^{2}}+\frac{1}{\left(2n+1 \right )^{4}}+\cdots \right )\\ &=1+\frac{1}{3}\left(\frac{\frac{1}{\left(2n+1 \right )^{2}}}{1-\frac{1}{\left(2n+1 \right )^{2}}} \right )\\ &=1+\frac{1}{3}\frac{1}{\left(2n+1 \right )^2-1}\\ &=1+\frac{1}{3}\;\frac{1}{2n\left(2n+2 \right )}\\ &=1+\frac{1}{12n\left(n+1 \right )} \end{aligned} 1+31((2n+1)21+(2n+1)41+)=1+31(1(2n+1)21(2n+1)21)=1+31(2n+1)211=1+312n(2n+2)1=1+12n(n+1)1
1 < ln ⁡ ( n + 1 n ) 2 n + 1 2 ≤ 1 + 1 12 n ( n + 1 ) e < e ( n + 1 2 ) ln ⁡ ( 1 + 1 n ) ≤ e ( 1 + 1 12 n ( n + 1 ) ) e < ( 1 + 1 n ) ( n + 1 2 ) ≤ e ( 1 + 1 12 n ( n + 1 ) ) \begin{aligned} 1<&\ln\left(\frac{n+1}{n} \right )\frac{2n+1}{2}&\leq&1+\frac{1}{12n\left(n+1 \right )}\\ e<&e^{\left(n+\frac{1}{2} \right )\ln\left(1+\frac{1}{n} \right )}&\leq& e^{\left( 1+\frac{1}{12n\left(n+1 \right )}\right )}\\ e<&\left(1+\frac{1}{n} \right )^{\left(n+\frac{1}{2} \right )}&\leq &e^{\left( 1+\frac{1}{12n\left(n+1 \right )}\right )} \end{aligned} 1<e<e<ln(nn+1)22n+1e(n+21)ln(1+n1)(1+n1)(n+21)1+12n(n+1)1e(1+12n(n+1)1)e(1+12n(n+1)1)
a n = n ! e n n ( n + 1 2 ) a_{n}=\frac{n!e^{n}}{n^{\left(n+\frac{1}{2} \right )}} an=n(n+21)n!en
a n a n + 1 = n ! e n n ( n + 1 2 ) ( n + 1 ) ! e ( n + 1 ) ( n + 1 ) ( n + 3 2 ) = ( n + 1 ) n + 1 2 ( n + 1 ) e ( n + 1 ) n n + 1 2 = ( 1 + 1 n ) n + 1 2 e \begin{aligned} &\quad \frac{a_{n}}{a_{n+1}}\\ &=\frac{\frac{n!e^{n}}{n^{\left(n+\frac{1}{2} \right )}}}{\frac{\left(n+1 \right )!e^{\left(n+1 \right )}}{\left(n+1 \right )^{\left(n+\frac{3}{2} \right )}}}\\ &=\frac{\left(n+1 \right )^{n+\frac{1}{2}}\left(n+1 \right )}{e\left(n+1 \right )n^{n+\frac{1}{2}}}\\ &=\frac{\left (1+\frac{1}{n} \right )^{n+\frac{1}{2}}}{e} \end{aligned} an+1an=(n+1)(n+23)(n+1)!e(n+1)n(n+21)n!en=e(n+1)nn+21(n+1)n+21(n+1)=e(1+n1)n+21
e < ( 1 + 1 n ) n + 1 2 ≤ e ( 1 + 1 12 n ( n + 1 ) ) 1 < ( 1 + 1 n ) n + 1 2 e ≤ e 1 12 n ( n + 1 ) 1 < a n a n + 1 ≤ e 1 12 n ( n + 1 ) 0 < a n + 1 < a n \begin{aligned} e<&\left(1+\frac{1}{n} \right )^{n+\frac{1}{2}}&\leq& e^{\left(1+\frac{1}{12n\left(n+1 \right )} \right )}\\ 1<&\frac{\left(1+\frac{1}{n} \right )^{n+\frac{1}{2}}}{e}&\leq& e^{\frac{1}{12n\left(n+1 \right )} }\\ 1<&\frac{a_{n}}{a_{n+1}}&\leq &e^{\frac{1}{12n\left(n+1 \right )} }\\ 0<&a_{n+1}&<&a_{n}\\ \end{aligned} e<1<1<0<(1+n1)n+21e(1+n1)n+21an+1anan+1<e(1+12n(n+1)1)e12n(n+1)1e12n(n+1)1an
{ a n } \{an\} {an}单调递减有下界
lim ⁡ n → + ∞ a n = a \lim\limits_{n\rightarrow +\infty}a_{n}=a n+liman=a
a n ∗ e − 1 12 n < a n + 1 ∗ e − 1 12 ( n + 1 ) lim ⁡ n → + ∞ a n ∗ e − 1 12 n = a a_{n}*e^{-\frac{1}{12n}}<a_{n+1}*e^{-\frac{1}{12\left(n+1 \right )}}\\ \lim\limits_{n\rightarrow +\infty}a_{n}*e^{-\frac{1}{12n}}=a ane12n1<an+1e12(n+1)1n+limane12n1=a
a n ∗ e − 1 12 n {a_{n}*e^{-\frac{1}{12n}}} ane12n1单调递增有上界
a n ∗ e − 1 12 n < a < a n e − 1 12 n < a a n < 1 − 1 12 n < ln ⁡ ( a a n ) < 0 0 < ln ⁡ ( a a n ) − 1 12 n = θ < 1 \begin{aligned} a_{n}*e^{-\frac{1}{12n}}<&a&<&a_{n}\\ e^{-\frac{1}{12n}}<&\frac{a}{an}&<&1\\ -\frac{1}{12n}<&\ln\left(\frac{a}{an} \right )&<&0\\ 0<&\frac{\ln\left(\frac{a}{an} \right )}{-\frac{1}{12n}}=\theta &<&1 \end{aligned} ane12n1<e12n1<12n1<0<aanaln(ana)12n1ln(ana)=θ<<<<an101
a n = a ∗ e θ 12 n = n ! e n n n + 1 2 \begin{aligned} &\quad a_{n}\\ &=a*e^{\frac{\theta}{12n} }\\ &=\frac{n!e^{n}}{n^{n+\frac{1}{2}}} \end{aligned} an=ae12nθ=nn+21n!en
n ! = a ∗ e θ 12 n ∗ n ( n + 1 2 ) e n = a ( n e ) n n    e θ 12 n \begin{aligned} &\quad n!\\ &=\frac{a*e^{\frac{\theta}{12n}}*n^{\left(n+\frac{1}{2} \right )}}{e^{n}}\\ &=a\left(\frac{n}{e} \right )^{n}\sqrt{n}\;e^{\frac{\theta}{12n}} \end{aligned} n!=enae12nθn(n+21)=a(en)nn e12nθ
Wallis公式 lim ⁡ n → + ∞ 2 4 n ( ( n ! ) 2 ( 2 n ) ! ) 2 1 2 n + 1 = π 2 \lim\limits_{n\rightarrow+ \infty }2^{4n}\left ( \frac{\left ( n! \right )^{2}}{\left ( 2n \right)!} \right )^{2} \frac{1}{2n+1}=\frac{\pi }{2} n+lim24n((2n)!(n!)2)22n+11=2π
lim ⁡ n → + ∞ 2 4 n ( ( n ! ) 2 ( 2 n ) ! ) 2 2 n + 1 = lim ⁡ n → + ∞ 2 4 n ( ( a ( n e ) n n    e θ 12 n ) 2 a ( 2 n e ) 2 n 2 n    e θ 24 n ) 2    1 2 n + 1 = lim ⁡ n → + ∞ 2 4 n ( a 2 ( n e ) 2 n n    e 4 θ 24 n a ( 2 n e ) 2 n 2 n    e θ 24 n ) 2    1 2 n + 1 = lim ⁡ n → + ∞ 2 4 n ( a ( 1 2 ) 2 n n 2 e θ 8 n ) 2    1 2 n + 1 = lim ⁡ n → + ∞ 2 4 n a 2 2 − 4 n n 2 e θ 4 n 1 2 n + 1 = lim ⁡ n → + ∞ a 2 n e θ 4 n 2 ( 2 n + 1 ) = a 2 4 = π 2 \begin{aligned} &\quad \lim_{n\rightarrow +\infty}2^{4n}\frac{\left(\frac{\left ( n! \right )^2}{\left(2n \right )!} \right )^{2}}{2n+1}\\ &=\lim_{n\rightarrow +\infty}2^{4n}\left ( \frac{\left(a\left(\frac{n}{e} \right )^{n} \sqrt{n}\;e^{\frac{\theta }{12n}}\right )^{2}}{a\left(\frac{2n}{e} \right )^{2n} \sqrt{2n}\;e^{\frac{\theta }{24n}}} \right )^2\;\frac{1}{2n+1}\\ &=\lim_{n\rightarrow +\infty}2^{4n}\left ( \frac{a^{2}\left(\frac{n}{e} \right )^{2n} n\;e^{\frac{4\theta }{24n}}}{a\left(\frac{2n}{e} \right )^{2n} \sqrt{2n}\;e^{\frac{\theta }{24n}}} \right )^2\;\frac{1}{2n+1}\\ &=\lim_{n\rightarrow +\infty}2^{4n}\left ( a\left(\frac{1}{2} \right )^{2n}\frac{\sqrt{n}}{\sqrt{2}}e^{\frac{\theta }{8n}}\right )^2\;\frac{1}{2n+1}\\ &=\lim_{n\rightarrow +\infty}2^{4n}a^{2}2^{-4n}\frac{n}{2}e^{\frac{\theta}{4n} }\frac{1}{2n+1}\\ &=\lim_{n\rightarrow +\infty}\frac{a^{2}ne^{\frac{\theta}{4n}}}{2(2n+1)}\\ &=\frac{a^{2}}{4}\\ &=\frac{\pi}{2} \end{aligned} n+lim24n2n+1((2n)!(n!)2)2=n+lim24na(e2n)2n2n e24nθ(a(en)nn e12nθ)222n+11=n+lim24n(a(e2n)2n2n e24nθa2(en)2nne24n4θ)22n+11=n+lim24n(a(21)2n2 n e8nθ)22n+11=n+lim24na224n2ne4nθ2n+11=n+lim2(2n+1)a2ne4nθ=4a2=2π
a = 2 π a=\sqrt{2\pi} a=2π
n ! = a ( n e ) n n    e θ 4 n = 2 π ( n e ) n n    e θ 4 n ( 0 < θ < 1 ) ( θ = ln ⁡ ( a a n ) − 1 12 n ) ≈ 2 π n ( n e ) n \begin{aligned} &\quad n!\\ &=a\left(\frac{n}{e} \right )^{n}\sqrt{n}\;e^{\frac{\theta}{4n}}\\ &=\sqrt{2\pi}\left(\frac{n}{e} \right )^{n}\sqrt{n}\;e^{\frac{\theta}{4n}}\left(0<\theta<1 \right )\left(\theta=\frac{\ln\left(\frac{a}{a_{n}} \right )}{-\frac{1}{12n}} \right )\\ &\approx \sqrt{2\pi n}\left(\frac{n}{e} \right )^{n} \end{aligned} n!=a(en)nn e4nθ=2π (en)nn e4nθ(0<θ<1)θ=12n1ln(ana)2πn (en)n

51nod 1130

解法: n n n的位数= lg ⁡ n + 1 \lg n+1 lgn+1,所以斯特林公式= 1 2 lg ⁡ ( 2 π n ) + n ∗ lg ⁡ ( π e ) \frac{1}{2}\lg(2πn)+n*\lg(\frac{\pi}{e}) 21lg(2πn)+nlg(eπ)

#include<iostream>
#include<cmath>
using namespace std;
const double PI = acos(-1);
const double E = exp(1);
const int getLength(int n) {
	if (!n)
		return 1;
	int a = (log(2 * PI*n) / 2 + n*log(n / E)) / log(10);
	return a + 1;
}
int main() {
	int t, n;
	cin >> t;
	while (t--) {
		cin >> n;
		cout << getLength(n) << endl;
	}
	return 0;
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值