动态规划——三角剖分问题

目录

问题描述

动态规划

解决方案:


问题描述

凸多边形三角剖分是一个几何问题,是计算及图形学的一项重要技术,其问题描述是:给定一个凸多边形,以及定义在由凸多边形的边和弦组成的三角形上的权函数。要求确定该凸多边形确定该凸多边形的一个三角剖分,是的该三角剖分中诸三角形上的权之和最小。

为了更好的解决问题,这里先简述一下动态规划的思想。


动态规划

动态规划是一种将复杂问题分解成很多子问题,并将子问题的求解结果存储起来避免重复求解的一种算法。动态规划一般用来解决最优问题

能用动态规划解决的问题,需要满足三个条件:最优子结构,无后效性和子问题重叠

1.最优子结构:一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。

2.无后效性:将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。

3.子问题重叠:如果有大量的重叠子问题,我们可以用空间将这些子问题的解存储下来,避免重复求解相同的子问题。

与分治策略率类似,动态规划也是利用了将问题分解为若干子问题的思路。不同的是,动态规划将子问题的解存储下来,避免求解相同的子问题,因此,动态规划往往应用于子问题不是相互独立的情况。


三角剖分问题求解

由最优子结构性质可以得到以下递归:

t[i][j]=\left\{\begin{matrix} 0,i=j\\ min \{t[i][j]+t[k+1][j]+w(v_{t-1}v_kv_j)\},i<j \end{matrix}\right.

t[i][j](1\leq i<j \leq n)为凸子多边形的最优三角剖分所对应的权函数值,即最优值。

核心代码如下:

void MinWeightTriangulation(int n,int m[][100],int s[][100])//计算最优值 
{
	for(int i=1;i<=n;i++)
		m[i][i]=0;
	for(int r=2;r<=n;r++)
	{
		for(int i=1;i<=n-r+1;i++)
		{
			int j=i+r-1;
			m[i][j]=m[i+1][j]+Weight(i-1,i,j);
			s[i][j]=i;
			for(int k=i+1;k<j;k++)
			{
				int t=m[i][k]+m[k+1][j]+Weight(i-1,k,j);
				if(t<m[i][j])
				{
					m[i][j]=t;
					s[i][j]=k;
				}
			}
		}
	}
}

void Traceback(int i,int j,int s[][100])//构造最优三角剖分 
{
	if(i==j) return;
	Traceback(i,s[i][j],s);
	Traceback(s[i][j]+1,j,s);
	cout<<i-1<<s[i][j]<<j<<endl;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值