[hihocdoer#1195 : 高斯消元·一] 高斯消元模板

[hihocdoer#1195 : 高斯消元·一] 高斯消元模板

题解思路

小Ho:<吧唧><吧唧><吧唧>

小Hi:小Ho,你还吃呢。想好了么?

小Ho:肿抢着呢(正想着呢)...<吞咽>...我记得这个问题上课有提到过,应该是一元一次方程组吧。

我们把每一件商品的价格看作是x[1]..x[n],第i个组合中第j件商品数量记为a[i][j],其价格记作y[i],则可以列出方程式:

a[1][1] * x[1] + a[1][2] * x[2] + ... + a[1][n] * x[n] = y[1]
a[2][1] * x[1] + a[2][2] * x[2] + ... + a[2][n] * x[n] = y[2]
                                  ...
a[m][1] * x[1] + a[m][2] * x[2] + ... + a[m][n] * x[n] = y[m]

我们可以对方程组进行3种操作而不改变方程组的解集:

1. 交换两行。

2. 把第i行乘以一个非0系数k。即对于j = 1..n, 令a[i][j] = k*a[i][j], y[i]=k*y[i]

3. 把第p行乘以一个非0系数k之后加在第i行上。即对于j=1..n, 令a[i][j] = a[i][j]+k*a[p][j],y[i]=y[i]+k*p[i]

以上三个操作叫做初等行变换。

我们可以使用它们,对这个方程组中的a[i][j]进行加减乘除变换,举个例子:

a[1][1] * x[1] + a[1][2] * x[2] + ... + a[1][n] * x[n] = y[1]    式子(1)
a[2][1] * x[1] + a[2][2] * x[2] + ... + a[2][n] * x[n] = y[2]    式子(2)

我们可以通过 式子(1) - 式子(2) * (a[1][1] / a[2][1]),将第1行第1列的a[1][1]变换为0。

对整个方程组进行多次变换之后,可以使得a[i][j]满足:

a[i][j] = 1 (i == j)
a[i][j] = 0 (i != j)

则整个方程组变成了:

x[1] = y'[1]
x[2] = y'[2]
...
x[n] = y'[n]
0 = y'[n + 1]
0 = y'[n + 2]
...
0 = y'[m]

这样的话,y'[1] .. y'[n]就是我们要求的x[1]..x[n]

小Hi:挺不错的嘛,继续?

小Ho:好,关于如何变换,我们可以利用一个叫高斯消元的算法。高斯消元分成了2个步骤:

首先我们要计算出上三角矩阵,也就是将方程组变为:

a[1][1] * x[1] + a[1][2] * x[2] + ... + a[1][n] * x[n] = y'[1]
      0 * x[1] + a[2][2] * x[2] + ... + a[2][n] * x[n] = y'[2]
      0 * x[1] +       0 * x[2] + ... + a[3][n] * x[n] = y'[3]
                                   ...
      0 * x[1] +       0 * x[2] + ... + a[n][n] * x[n] = y'[n]
      0 * x[1] +       0 * x[2] + ... +       0 * x[n] = y'[n + 1]
	                               ...
      0 * x[1] +       0 * x[2] + ... +       0 * x[n] = y'[m]

也就是通过变换,将所有a[i][j](i>j)变换为0。同时要保证对角线上的元素a[i][i]不为0。

方法也很见简单,从第1行开始,我们利用当前行第i列不为0,就可以通过变换将i+1..M行第一列全部变换为0,接着对于第2行,我们用同样的方法将第3..M行第2列也变换为0...不断重复直到第n行为止。

假如计算到第i行时,第i列已经为0,则我们需要在第i+1..M行中找到一行第i列不为0的行k,并交换第i行和第k行,来保证a[i][i] != 0。但这时候还有可能出现一个情况,就是第i..M行中的i列均为0,此时可以判定,该方程组有多解。


当得到上三角矩阵后,就可以从第n行开始逆推,一步一步将a[i][j](i<j)也变换为0.

因为第n行为a[n][n] * x[n] = y'[n],则x[n] = y'[n] / a[n][n]。

第n-1行为a[n-1][n-1] * x[n - 1] + a[n][n] * x[n] = y'[n - 1]。我们将得到的x[n]代入,即可计算出x[n-1]。

同样的依次类推就可以得到所有的x[1]..x[n]。


而对于多解和无解的判定:

当在求出的上三角矩阵中出现了 a[i][1] = a[i][2] = ... = a[i][n] = 0, 但是y'[i] != 0时,产生了矛盾,即出现了无解的情况。

而多解的证明如下:

假设n=3,m=3,而我们计算出了上三角矩阵为:

a * x[1] + b * x[2] + c * x[3] = d
                      e * x[3] = f
                             0 = 0

当我们在第一个式子中消去x[3]后,有a * x[1] + b * x[2] = g,显然x[1]和x[2]有无穷多种可能的取值。

小Hi:既然小Ho你都已经把整个算法讲了,那么我就只能给出伪代码了:

// 处理出上三角矩阵
For i = 1..N
    Flag ← False
    For j = i..M                // 从第i行开始,找到第i列不等于0的行j
        If a[j][i] != 0 Then
            Swap(j, i)          // 交换第i行和第j行
            Flag ← True
            Break
        End If
    End For
    // 若无法找到,则存在多个解
    If (not Flag) Then
        manySolutionsFlag ← True // 出现了秩小于N的情况
        continue;
    End If
    // 消除第i+1行到第M行的第i列
    For j = i+1 .. M
        a[j][] ← a[j][] - a[i][] * (a[j][i] / a[i][i])
        b[j] ← b[j] - b[i] * (a[j][i] / a[i][i])
    End For
End For 

// 检查是否无解,即存在 0 = x 的情况
For i = 1..M
    If (第i行系数均为0 and (b[i] != 0)) Then
        return "No solutions"
    End If
End For

// 判定多解
If (manySolutionsFlag) Then
	return "Many solutions"
End If

// 此时存在唯一解
// 由于每一行都比前一行少一个系数,所以在M行中只有前N行有系数
// 解析来从第N行开始处理每一行的解
For i = N .. 1
    // 利用已经计算出的结果,将第i行中第i+1列至第N列的系数消除
    For j = i + 1 .. N
        b[i] ← b[i] - a[i][j] * value[j]
        a[i][j] ← 0
    End For
    value[i] ← b[i] / a[i][i]
End For

那最后能够拜托你实现一下这个算法么?

小Ho:没问题,等我吃完这包薯片就去!

#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

//#pragma comment(linker, "/STACK:1024000000,1024000000")

#define FIN             freopen("input.txt","r",stdin)
#define FOUT            freopen("output.txt","w",stdout)
#define fst             first
#define snd             second

//typedef __int64 LL;
typedef long long LL;
typedef pair<int, int> PII;

const double eps = 1e-6;
const int MAXN = 1000 + 5;
const int MAXE = 1000 + 5;

int T, N, M, K;

struct Gauss {
    // 等式的个数和变元的个数
    int equ, var;
    // 系数矩阵
    double a[MAXN][MAXN];
    // 常数列
    double b[MAXN];
    // 答案
    double x[MAXN];

    void read(int _equ, int _var) {
        equ = _equ, var = _var;
        for (int i = 1; i <= equ; i++) {
            for (int j = 1; j <= var; j++) {
                scanf("%lf", &a[i][j]);
            }
            scanf("%lf", &b[i]);
        }
    }
    /**
     * 交换r1, r2两行
     */
    void chg_row(int r1, int r2) {
        for (int i = 1; i <= var; i++) {
            swap(a[r1][i], a[r2][i]);
        }
        swap(b[r1], b[r2]);
    }
    /**
     * 求解多元方程组
     * @return [-1——无解, 0——无穷解, 1——唯一解]
     */
    int run() {
        bool flag, manysolutionsflag = false;
        // 处理出上三角矩阵
        for (int i = 1; i <= var; i++) {
            flag = false;
            // 从第i行开始,找到第i列不等于0的行j
            for (int j = i; j <= equ; j++) {
                if (fabs(a[j][i]) > eps) {
                    chg_row(i, j);
                    flag = true;
                    break;
                }
            }
            // 若无法找到,即出现了秩小于N的情况,则存在多个解
            if (!flag) {
                manysolutionsflag = true;
                continue;
            }
            // 消除第i+1行到第M行的第i列
            for (int j = i + 1; j <= equ; j++) {
                double t = a[j][i] / a[i][i];
                for (int k = 1; k <= var; k++) {
                    a[j][k] -= a[i][k] * t;
                }
                b[j] -= b[i] * t;
            }
        }
        // 检查是否无解,即存在 0 = x 的情况
        for (int i = 1; i <= equ; i++) {
            flag = false;
            // 判断第 i 行系数是否全为0, 并且b[i] != 0 的情况
            for (int j = 1; j <= var; j++) {
                if (fabs(a[i][j]) > eps) {
                    flag = true;
                    break;
                }
            }
            if (!flag && fabs(b[i]) > eps) {
                return -1;
            }
        }
        // 判定多解
        if (manysolutionsflag) return 0;
        // 此时存在唯一解
        // 由于每一行都比前一行少一个系数,所以在M行中只有前N行有系数
        // 解析来从第N行开始处理每一行的解
        for (int i = var; i >= 1; i--) {
            // 利用已经计算出的结果,将第i行中第i+1列至第N列的系数消除
            for (int j = i + 1; j <= var; j++) {
                b[i] -= a[i][j] * x[j];
                a[i][j] = 0;
            }
            x[i] = b[i] / a[i][i];
        }
        return 1;
    }
} gauss;

int main() {
#ifndef ONLINE_JUDGE
    FIN;
#endif // ONLINE_JUDGE
    while (~scanf ("%d %d", &N, &M) ) {
        gauss.read(M, N);
        int ret = gauss.run();
        switch (ret) {
        case -1:
            printf("No solutions\n");
            break;
        case 0:
            printf("Many solutions\n");
            break;
        case 1:
            for (int i = 1; i <= gauss.var; i++) {
                printf("%d\n", (int)(gauss.x[i] + 0.5));
            }
            break;
        }
    }
    return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值