P4170 [CQOI2007]涂色(区间DP)

这篇博客分析了一道区间动态规划题目——CQOI2007的涂色问题。通过定义f[i][j]表示将区间[i, j]染成目标颜色的最少染色次数,博主详细解释了状态转移方程的建立过程,包括当两端点颜色相等和不相等时的状态转移。代码实现中,首先初始化每个单点染色次数为1,然后通过双重循环进行状态更新。最后,博主给出了完整的C++代码来求解最小染色次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:[CQOI2007]涂色 - 洛谷

分析:这是一道比较典型的区间DP题目,我们令f[i][j]表示将区间[i,j]染成目标颜色的最少染色次数,下面我来具体分析一下如何进行状态转移:

假设我们当前遍历到f[i][j],我们考虑区间两端的端点颜色关系,如果满足s[i]==s[j],那么我们可以直接在染区间i~j-1或者染区间i+1~j的时候直接多染一格,那么也就是说这种情况有f[i][j]=min(f[i][j-1],f[i+1][j]),如果不满足s[i]==s[j],这个时候我们就像一般的区间DP问题那样枚举断点,也就是枚举k,f[i][j]就是两段区间的染色次数之和,也就是f[i][j]=min(f[i][j],f[i][k]+f[k+1][j])

下面是状态转移方程:

for(int len=2;len<=n;len++)
	for(int i=1;i+len-1<=n;i++)
	{
		int j=i+len-1;
		if(s[i]==s[j]) f[i][j]=min(f[i][j-1],f[i+1][j]);
		else
		{
			for(int k=i;k<j;k++)
				f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
		}
	}

至于初始化,我们直接令f[i][i]=1即可,也就是默认每个点的染色次数为1,这个也比较好理解,下面是完整代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int N=103;
typedef long long ll;
ll f[N][N];//f[i][j]表示把区间i~j的颜色涂成目标颜色的最少涂色次数
char s[N];
int main()
{
	scanf("%s",s+1);
	int n=strlen(s+1);
	memset(f,0x3f,sizeof f);
	for(int i=1;i<=n;i++)
		f[i][i]=1;
	for(int len=2;len<=n;len++)
	for(int i=1;i+len-1<=n;i++)
	{
		int j=i+len-1;
		if(s[i]==s[j]) f[i][j]=min(f[i][j-1],f[i+1][j]);
		else
		{
			for(int k=i;k<j;k++)
				f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
		}
	}
	printf("%lld",f[1][n]);
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值