分析:这道题目的数据量还是很大的,所以肯定不是暴力解决,这道题我当时在比赛时是用二分+数学公式推导来做的。
首先看到答案的形式我们很容易想到前缀和性质来解决,求l到r上所有数的和,就等价于求前r个数的和再减去前l-1个数的和,所以我们的问题就转换为了如何求出前x个数和。
先观察一下数的规律,可以发现数是分段连续的,而且每一段的个数都比上一段的个数多1,于是我们就可以先查出x所在段的段号,然后我们分别求出来x所在段前面的所有段的元素的和以及x所在段的且在x及x之前元素的和
分析到这我们就把题目分解为几个小问题:
(1)如何求出x所在的段
(2)如何求出x所在段前面所有段的元素和
(3)如何求出x所在段的且在x及x之前元素的和
先来看下第一个问题,这个问题还是挺好解决的,首先可以知道第i段的断长就是i,那么前n段的断长就是n*(n+1)/2,于是我们就可以二分来求x所在段的前一段的编号,二分过程我就不细述了,下面附上二分代码:
while(l<r)
{
mid=l+r+1>>1;
if(mid*(mid+1)/2<=x) l=mid;
else r=mid-1;
}
我们求出来x所在段的前一个段的段号,那么x所在段的段号就相应地求出来了,而且也可以知道x所在段的第一个元素的位置就是l*(l+1)/2+1,那么就很容易求出来第3个问题,因为我们知道了x所在段第一个元素的位置,那么我们就可以知道x是当前段的第几个元素,那么就很容易求出x所在段的且在x及x之前元素的和
最后我们来看下第二个问题,首先我们可以知道的是每一段的所有元素和,例如第i段的所有元素和就是i*(i+1)/2,假设x前面一共有n个段,那么就是让我们求,也就是, 就是i*(i+1)/2,关键是求,这个有公式,但是比较难记,我在下面给出了公式的推导方法,类似的求n阶次方和也是利用n+1阶和1~n-1阶次方和以及差分思想推导得到,感兴趣的同学可以自行扩充一下:
有了这个公式之后我们就可以得到上面那两个和的形式就等于
(l*(l+1)/2+l*(2*l+1)*(l+1)/6)/2
又因为我们可以直接用一个等差数列求和得到x所在段的元素和,所以我们知道x所在段号后就可以o(1)求出来前x个元素的和,在二分求段号的复杂度是o(logn),所以整个求前x个元素的和的复杂度就是o(logn),这样就能满足本题复杂度了。
下面是代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
typedef long long ll;
ll f(ll x)
{
if(x==0) return 0;
ll l=1,r=1e9,mid;
while(l<r)
{
mid=l+r+1>>1;
if(mid*(mid+1)/2<=x) l=mid;
else r=mid-1;
}
ll t=x-l*(l+1)/2;
ll ans=(l*(2*l+1)*(l+1)/6+l*(l+1)/2)/2;
ans+=t*(t+1)/2;
return ans;
}
int main()
{
int T;
cin>>T;
ll l,r;
while(T--)
{
scanf("%lld%lld",&l,&r);
printf("%lld\n",f(r)-f(l-1));
}
return 0;
}