codeforce problem 908 D. New Year and Arbitrary Arrangement(概率DP)

博客主要介绍了如何利用动态规划和概率计算解决一类问题:给定三个整数k, pa, pb,根据特定概率向字符串添加'a'或'b',当ab子序列数量达到k时停止,求停止后ab子序列期望数量。通过分析动态转移方程,计算特定情况下的期望值,并给出C++代码实现。
摘要由CSDN通过智能技术生成

题目链接:Problem - 908D - Codeforces

题意:给定三个整数k,pa,pb,一开始串为空,每次有pa/(pa+pb)的概率向串的末尾加一个a,有pb/(pa+pb)的概率向串的末尾加一个b,当串中ab的子序列个数大于等于k时就停止加字符,问停止加字符后串中ab子序列的个数的期望。一般求出是一个最简分数ans1/ans2,输出ans1乘以ans2关于mod的逆元再对mod取模。mod为1e9+7

分析:设f[i][j]表示当前串中有i个a,j个ab子序列时加字符直到停止时ab子序列的个数的期望。

那么显然有f[i][j]=j(j>=k),动态转移方程也比较简单,就是:

f[i][j]=(pa/(pa+pb))*f[i+1][j]+(pb/(pa+pb))*f[i][j+i]

当我们此次操作是向原串中加入一个a时,对原串的影响只是a的个数加1,并不会对原串中ab子序列的个数产生影响,而当我们此次操作是向原串中加入一个b时,对原串中a的个数并没有影响,但原串中有多少个a,那么和当前操作加入的b组合后就会多出来几个ab子序列,这也就是动态转移方程的由来。

但是我们容易发现一个问题,就是如果字符串中一直添加的是a,那么根本就不会停止,所以说我们还需要手算一些a特别多的情况:

当a的个数+ab子序列的个数大于等于k时,那么我们现在只需要在后续的字符选择中选择一个b,那么就可以满足题意了,所以我们可以手算这种情况下的期望值。

设p1=pa/(pa+pb)  p2=pb/(pa+pb)

假设我们第k次时选到了一个b,那么这种情况发生的概率就是

p1^(k-1)*p2,这种情况下最后ab子序列的数目是|a|+(k-1)+|ab|,那么期望就是

我们的目标状态就是f[1][0],因为一定需要先有一个a才可能会出现ab子序列,所以我们可以直接输出f[1][0],如果我们输出f[0][0]的话会出现一个问题,因为在(0,0)状态还可能转换到(0,0)状态,而这样会无限递归而且永远不会满足递归终止条件,所以我们应该输出f[1][0]。

下面是代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
const int N=1e3+10,mod=1e9+7;
long long qpow(long long a,long long b)
{
	long long ans=1;
	while(b)
	{
		if(b&1) ans=ans*a%mod;
		b>>=1;
		a=a*a%mod;
	}
	return ans;
}
long long pa,pb,k,ni;
long long f[N][N];//f[i][j]表示当前状态有i个a,j个ab子序列时加字符直到停止的期望ab个数
long long dfs(long long x,long long y)//X代表当前状态a的个数,y代表当前状态ab子序列的个数 
{
	if(x+y>=k) return (x+y-1+(pa+pb)*qpow(pb,mod-2))%mod;
	if(f[x][y]>0) return  f[x][y];
	f[x][y]=(f[x][y]+pa*ni%mod*dfs(x+1,y))%mod;
	f[x][y]=(f[x][y]+pb*ni%mod*dfs(x,x+y))%mod;
	return f[x][y];
}
int main()
{
	cin>>k>>pa>>pb;
	ni=qpow(pa+pb,mod-2);
	printf("%lld",dfs(1,0));
	return 0;
}
### 回答1: #include <stdio.h> int main(){ //定义一个3*3的数组用来存储棋盘 int board[3][3]={0}; int x,y,turn=1; while (1){ //打印棋盘 printf("当前棋盘:\n"); for (x=0;x<3;x++){ for (y=0;y<3;y++){ printf("%d ",board[x][y]); } printf("\n"); } //根据turn的值来判断谁轮到落子 if (turn==1){ printf("轮到X落子,请输入落子的位置(x y):"); }else { printf("轮到O落子,请输入落子的位置(x y):"); } scanf("%d %d",&x,&y); //将落子位置的值设置为对应的值 board[x][y] = turn; //改变轮到谁落子 turn = -turn; //判断谁赢了 if (board[0][0]==board[1][1] && board[1][1]==board[2][2] && board[2][2]!=0){ printf("游戏结束,获胜者是%c\n",board[0][0]==1?'X':'O'); break; } if (board[2][0]==board[1][1] && board[1][1]==board[0][2] && board[0][2]!=0){ printf("游戏结束,获胜者是%c\n",board[2][0]==1?'X':'O'); break; } for (x=0;x<3;x++){ if (board[x][0]==board[x][1] && board[x][1]==board[x][2] && board[x][2]!=0){ printf("游戏结束,获胜者是%c\n", board[x][0] == 1 ? 'X' : 'O'); break; } if (board[0][x]==board[1][x] && board[1][x]==board[2][x] && board[2][x]!=0){ printf("游戏结束,获胜者是%c\n", board[0][x] == 1 ? 'X' : 'O'); break; } } } return 0; } ### 回答2: 为了回答这个问题,需要提供题目的具体要求和规则。由于提供的信息不够具体,无法为您提供准确的代码。但是,我可以给您一个简单的Tic-tac-toe游戏的示例代码,供您参考: ```c #include <stdio.h> #include <stdbool.h> // 判断游戏是否结束 bool isGameOver(char board[][3]) { // 判断每行是否有3个相同的棋子 for(int i = 0; i < 3; i++) { if(board[i][0] != '.' && board[i][0] == board[i][1] && board[i][0] == board[i][2]) { return true; } } // 判断每列是否有3个相同的棋子 for(int i = 0; i < 3; i++) { if(board[0][i] != '.' && board[0][i] == board[1][i] && board[0][i] == board[2][i]) { return true; } } // 判断对角线是否有3个相同的棋子 if(board[0][0] != '.' && board[0][0] == board[1][1] && board[0][0] == board[2][2]) { return true; } if(board[0][2] != '.' && board[0][2] == board[1][1] && board[0][2] == board[2][0]) { return true; } return false; } // 输出棋盘 void printBoard(char board[][3]) { for(int i = 0; i < 3; i++) { for(int j = 0; j < 3; j++) { printf("%c ", board[i][j]); } printf("\n"); } } int main() { char board[3][3]; // 初始化棋盘 for(int i = 0; i < 3; i++) { for(int j = 0; j < 3; j++) { board[i][j] = '.'; } } int player = 1; // 玩家1先下 int row, col; while(true) { printf("Player %d's turn:\n", player); printf("Row: "); scanf("%d", &row); printf("Column: "); scanf("%d", &col); // 判断输入是否合法 if(row < 0 || row >= 3 || col < 0 || col >= 3 || board[row][col] != '.') { printf("Invalid move. Try again.\n"); continue; } // 下棋 board[row][col] = (player == 1) ? 'X' : 'O'; // 输出棋盘 printBoard(board); // 判断游戏是否结束 if(isGameOver(board)) { printf("Player %d wins!\n", player); break; } // 切换玩家 player = (player == 1) ? 2 : 1; } return 0; } ``` 这段代码实现了一个简单的命令行下的Tic-tac-toe游戏。玩家1使用'X'棋子,玩家2使用'O'棋子。玩家依次输入行和列,下棋后更新棋盘,并判断游戏是否结束。当游戏结束时,会输出获胜者并结束游戏。 ### 回答3: 题目要求实现一个井字棋游戏的判断胜负函数。给定一个3x3的井字棋棋盘,用C语言编写一个函数,判断当前是否存在某个玩家获胜或者平局。 题目要求代码中定义一个3x3的字符数组board来表示棋盘,其中 'X' 表示玩家1在该位置放置了一个棋子, 'O' 表示玩家2在该位置放置了一个棋子, '.' 表示该位置没有棋子。 下面是实现此题的C语言代码: ```c #include <stdio.h> #include <stdbool.h> // 用于使用bool类型 bool checkWin(char board[3][3]) { // 检查每一行是否有获胜的情况 for (int row = 0; row < 3; row++) { if (board[row][0] == board[row][1] && board[row][1] == board[row][2] && board[row][0] != '.') { return true; } } // 检查每一列是否有获胜的情况 for (int col = 0; col < 3; col++) { if (board[0][col] == board[1][col] && board[1][col] == board[2][col] && board[0][col] != '.') { return true; } } // 检查对角线是否有获胜的情况 if ((board[0][0] == board[1][1] && board[1][1] == board[2][2] && board[0][0] != '.') || (board[0][2] == board[1][1] && board[1][1] == board[2][0] && board[0][2] != '.')) { return true; } return false; // 没有获胜的情况 } int main() { char board[3][3]; // 存储棋盘状态 // 读取棋盘状态 for (int i = 0; i < 3; i++) { scanf("%s", board[i]); } // 调用检查胜负的函数,并输出结果 if (checkWin(board)) { printf("YES\n"); } else { printf("NO\n"); } return 0; } ``` 这个程序中定义了一个函数checkWin,用于检查是否有玩家获胜。遍历棋盘的每一行、每一列和对角线,判断是否有连续相同的字符且不为'.',如果有,则返回true;否则返回false。 在主函数main中,首先定义一个3x3的字符数组board,然后通过循环从标准输入中读取棋盘状态。接着调用checkWin函数进行胜负判断,并根据结果输出"YES"或者"NO"。最后返回0表示程序正常结束。 请注意,该代码只包含了检查胜负的功能,并没有包含其他如用户输入、判断平局等功能。如果需要完整的游戏代码,请告知具体要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值