样例输入:
6 2 4 6
5 3 4 6 4 9
1 2
1 2 3
1 3 4
2 3 5
4 5 6
样例输出:
16
分析:这道题需要注意的一个点就是一种作物可以同时和多种作物进行杂交,所以我们不需要考虑用该种作物先生成哪种作物的问题,只要该种作物已经生成,那么就用该种作物去生成所有能够生成的作物,这样一定是最优的,所以我们按照这种思路我们可以从目标作物反向搜索,比如我们现在要生成作物z,一共有p种方案,那么我们就要在这p种方案种选一个最小值,假如某种方案需要作物x和y,那么利用x和y来生成z的时间包含两部分,一部分是生成x和y的时间中的较大值(原因就是只有x和y都已经生成才可以用来生成z),还有一部分就是x和y种植的时间最大值,这两部分相加就是用x和y最早得到z的时间,在所有的方案中取一个最小值即可,过程就是利用记忆化进行搜索。
细节见代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
using namespace std;
const int N=2e5+10;
typedef pair<int,int>PII;
vector<PII> p[N];
int t[N];//t[i]记录第i种作物的种植时间
int f[N];//f[i]记录得到第i种作物的最短时间
int dfs(int x)
{
if(f[x]!=0x3f3f3f3f) return f[x];
for(int i=0;i<p[x].size();i++)
{
int u=p[x][i].first,v=p[x][i].second;
f[x]=min(f[x],max(t[u],t[v])+max(dfs(u),dfs(v)));
}
return f[x];
}
int main()
{
int n,m,k,T;
cin>>n>>m>>k>>T;
for(int i=1;i<=n;i++)
scanf("%d",&t[i]);
memset(f,0x3f,sizeof f);
for(int i=1;i<=m;i++)
{
int x;
scanf("%d",&x);
f[x]=0;
}
for(int i=1;i<=k;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
p[c].push_back({a,b});
}
int ans=dfs(T);
printf("%d",ans);
return 0;
}