这个题的思路就是先逆向建图这点不容易想到,逆向建图的原因是便于枚举与0临接的边,如果正向建图的话是没有办法实现的,
一直在WA,后来看了题解也知道自己对题目的挖掘还不够,而且对dijkstra的理解也还不够.
这个题的思路就是先逆向建图求出最短路之后,枚举与0临接的边.
坑点在于这个图不一定是联通图.
ACcode
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 1e3 + 10;
int n,m;
int dis[MAXN];
int tag[MAXN];
int G[MAXN][MAXN];
int dijsktra(int v0)
{
memset(dis,INF,sizeof(dis));
memset(tag,0,sizeof(tag));
for(int i = 0;i <= n + 1; ++i)
dis[i] = G[v0][i];
tag[v0] = 1; dis[v0] = 0;
for(int i = 1; i <= n + 1;++i)
{
int _min = INF;
int v = INF;
for(int j = 0; j<= n + 1; ++j)
{
if(_min > dis[j] && !tag[j])
{
_min = dis[j];
v = j;
}
}
if(_min == INF) break; // 判断是否联通.
tag[v] = 1;
for(int j = 0;j <= n + 1; ++j)
{
if(dis[j] > dis[v] + G[v][j] && !tag[j])
{
dis[j] = dis[v] + G[v][j];
}
}
}
return dis[0];
}
int main()
{
int T;
cin >> T;
while(T--)
{
cin >> n >> m;
memset(G,INF,sizeof(G));
for(int i = 1; i <= m;++i)
{
int u,v,w;
cin >> u >> v >> w;
w = min(G[v][u],w);
G[v][u] = w;
}
int temp;
temp = dijsktra(n + 1);
if(temp == INF)
cout << "-1" << endl;
else
{
if(G[n + 1][0] <= temp)
cout << "0" << endl;
else
{
for(int i = 1;i <= n + 1;++i)
{
if(G[i][0] != INF)
{
if(G[i][0] + dis[i] == temp)
{
cout << i << endl;
break;
}
}
}
}
}
}
}