翻棋子游戏:
题意:一个棋盘上每个格子有一个棋子,每次操作可以随便选一个朝上的棋子(x,y),代表第i行第j列的棋子,选择一个形
如(x,b)或(a,y)(其中b < y,a < x)的棋子,然后把它和(x,y)一起翻转,无法操作的人输。
分析:把坐标为(x,y)的棋子看成大小分别为x和y的两堆石子,则本题转化为了经典的Nim游戏,如果难以把棋子看作石
子,可以先把Nim游戏中的一堆石子看成一个正整数,则Nim游戏中的每次操作是把其中一个正整数减小或者删除。
除法游戏:
题目:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2959
题意:有一个n*m的矩阵,每个元素均为2~10000之间的正整数。两个游戏者轮流操作。每次可以选一行中的1个或者多个大于1的整数,把
它们中的每个数都变成它的某个真因子,比如12可以变成1,2,3,4或者6,不能操作的输(换句话说,如果在谁操作之前,
矩阵中的所有数都是1,则他输)。
分析:考虑每个数的素因子个数,比如12包含3个素因子,则让一个数变成它的真因子等价于拿掉它的一个或者多个素因
子。这样,每行对应于一个石堆,每个数的每个素因子看成是一颗石子,则本题就和Nim游戏完全等价了。