BZOJ1041&&洛谷P2508 [HAOI2008]圆上的整点

%%%%PoPoQQQ大爷

由这个x^2+y^2=r^2

化简可得 y^2=(r-x)(r+x),若d=gcd(r-x,r+x)

则gcd((r-x)/d与(r+x)/d)=1,二者相乘为完全平方数,则二者一定都为完全平方数

令r-x=d*u^2,r+x=d*v^2,则有u,v互质,且u<v

其可得x=d(v^2-u^2)/2,y=d*u*v,r=d*(u^2+v^2)/2

于是枚举2r的因数inz,对于每个inz我们用O[√(r/d)]的时间枚举u 代入r的计算式得出v^2 计算v^2是否为完全平方数及u与v是否互质

然后枚举出一个象限内的整点个数 ,最后输出(ans+1)*4即可,加一是四个顶点

记得longlong,不然疯狂TLE,不要问我咋知道的

代码

//By AcerMo
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lli long long int
using namespace std;
lli n,ans,in[100500],cnt;
inline void getin(lli x)
{
	for (lli i=1;i*i<=x;i++)
	if (i*i!=x&&x%i==0) in[++cnt]=i,in[++cnt]=x/i;
	else if (i*i==x) in[++cnt]=i;
	return ;
}
inline lli gcd(lli x,lli y)
{
	if (!y) return x;
	return gcd(y,x%y);
}
inline bool chesqu(lli x)
{
	lli sq=sqrt(x);
	return sq*sq==x;
}
signed main()
{
	cin>>n;getin(n*2);
	for (lli i=1;i<=cnt;i++)
	{
		lli inz=in[i];
		for (lli k=1;k*k<(n+1)/inz;k++)
		{
			lli y=n*2/inz-k*k;
			ans+=(chesqu(y)&&gcd(y,k*k)==1);
		}
	}
	return cout<<(++ans*4),0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值