【pytorch图像分类】AlexNet网络结构

目录

1、前言

2、网络创新 

过拟合:

LRN:Local Response Normalization

归一化

3、网络结构图:

4.代码实现 

5.总结


1、前言

AlexNet 是 2012 年 ISLVRC2012 (Image Large Scale Visual Recognition Challenge) 竞赛的冠军网络,原始论文为ImageNet Classification with Deep Convolutional Neural Networks。

当时传统算法已经达到性能瓶颈,然而 AlexNet 将分类准确率由传统的 70%+ 提升到 80%+。它是由 Hinton 和他的学生 Alex Krizhevsky 设计的。也就是在那年之后,每年的 ImageNet LSVRC 挑战赛都被深度学习模型霸占着榜首,深度学习开始迅速发展。

注:ISLVRC2012 包括以下三部分:

  • 训练集:1281167 张已标注图片
  • 验证集:50000 张已标注图片
  • 测试集:100000 张未标注图片

2、网络创新 

  • 首次利用GPU进行网络加速训练,两块GPU并行运算

  • 使用ReLU激活函数,而不是sigmoid或者Tanh,

  • LRN对局部的特征进行归一化,结果作为ReLU激活函数的输入能有效降低错误率

  • 全连接层的前连层使用了Dropout随机失活神经元操作,防止过拟合

过拟合:

 

LRN:Local Response Normalization

是AlexNet中首次引入的归一化方法,但是在BatchNorm之后就很少使用这种方法了,这里对其概念进行简单理解

 

 

归一化

(1)为了后面数据处理的方便,归一化的确可以避免一些不必要的数值问题。

(2)为了程序运行时收敛加快。 下面图解。

(3)同一量纲。样本数据的评价标准不一样,需要对其量纲化,统一评价标准。这算是应用层面的需求。

(4)避免神经元饱和。啥意思?就是当神经元的激活在接近0或者1时会饱和,在这些区域,梯度几乎为0,这 样,在反向传播过程中,局部梯度就会接近0,这会有效地“杀死”梯度。

(5)保证输出数据中数值小的不被吞食。

 

3、网络结构图:

 

Conv1:

input_Size : [224,224,3]

kernels:48*2=96

Kernel_size:11

stride:4

padding :[1,2] (上下1列0,左右2列0)推理出来的 出现的原因是下面的公式计算出来有小数

N = w -F+2p)/S +1 = (224-11+(1+2))/4+1

output_size:[55,55,96]

Maxpool1:

只改变特征层的高度和宽度,深度不会改变

N = (W-F+2P)/S +1 = (55-3)/2+1

 

input_Size : [55,55,96]
Kernel_size:3
padding =0
stride = 2
output_size: [27,27,96] 

 Conv2:

N =(w -F+2p)/S +1 = (27-5+2*2)/1 +1

input_Size : [27,27,96] 
kernels:128*2=256
Kernel_size:5
padding = [2,2]    
stride = 1
output_size: [27,27,256] 

Conv3:

N = (w -F+2p)/S +1 = (13-3+2)/1+1 = 13

input_Size : [13,13,256] 
kernels:128*2=192*2
Kernel_size:3
padding = [1,1]
stride = 1
output_size: [13,13,384] 

 Conv4:

N = (w -F+2p)/S +1 = (13-3+2)/1+1 = 13

input_Size : [13,13,384] 
kernels:128*2=192*2
Kernel_size:3
padding = [1,1]
stride = 1
output_size: [13,13,384] 

 Conv5:

N = (w -F+2p)/S +1 = (13-3+2)/1+1 = 13

input_Size : [13,13,384] 
kernels:128*2=128*2 =256    #输出通道
Kernel_size:3
padding = [1,1]
stride = 1
output_size: [13,13,256]

Maxpool3 :

N = (W-F+2P)/S +1 = (13-3)/2+1 =6

input_Size : [13,13,256] 
kernels:128*2=256
Kernel_size:3
padding = 0
stride = 2
output_size: [6,6,256]

4.代码实现 

import torch
from torch import nn
from torch.nn import Flatten

class AlexNet(nn.Module):
    def __init__(self,num_class=1000,init_weight=False):
        super(AlexNet,self).__init__()

        self.features = nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=48,kernel_size=11,stride=4,padding=2), # input[3, 224, 224]  output[48, 55, 55]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3,stride=2) ,
            nn.Conv2d(in_channels=48,out_channels=128,kernel_size=5,padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3,stride=2),
            nn.Conv2d(in_channels=128,out_channels=192,kernel_size=3,padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=192,out_channels=192,kernel_size=3,padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=192,out_channels=128,kernel_size=3,padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3,stride=2),

        )

        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128*6*6 , 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048,2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048,num_class),

        )
        if init_weight:
            self._initialize_weights()


    def forward(self,x):
        x = self.features(x)
        # self.flatten = nn.Flatten(start_dim=1,end_dim=-1)  #0维是batch_size,所以不用拉平,即从第二维拉平
        # x = self.flatten(x)
        # print(x.size())
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

5.总结

  • AlexNet的架构与LeNet相似,但使用了更多的卷积层和更多的参数来拟合大规模的ImageNet数据集。

  • 今天,AlexNet已经被更有效的架构所超越,但它是从浅层网络到深层网络的关键一步。

  • 尽管AlexNet的代码只比LeNet多出几行,但学术界花了很多年才接受深度学习这一概念,并应用其出色的实验结果。这也是由于缺乏有效的计算工具。

  • Dropout、ReLU和预处理是提升计算机视觉任务性能的其他关键步骤。

  • 1
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是基于AlexNet网络的像识别步骤及关键代码: 步骤: 1. 加载数据集,包括训练集和测试集。 2. 对数据进行预处理,包括数据增强和归一化处理。 3. 定义AlexNet网络结构。 4. 定义损失函数和优化器。 5. 训练网络模型。 6. 在测试集上测试网络模型的性能。 代码: 1. 加载数据集 ```python # 加载数据集 train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False, num_workers=2) ``` 2. 预处理数据 ```python # 定义数据增强和归一化处理 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ``` 3. 定义AlexNet网络结构 ```python class AlexNet(nn.Module): def __init__(self, num_classes=10): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x ``` 4. 定义损失函数和优化器 ```python # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4) ``` 5. 训练网络模型 ```python # 训练网络模型 for epoch in range(num_epochs): running_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader, 0): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 ``` 6. 测试网络模型的性能 ```python # 在测试集上测试网络模型的性能 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值