关键点定位
#导入工具包
from collections import OrderedDict
import numpy as np
import argparse
import dlib
import cv2
#https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
#http://dlib.net/files/
0.人脸配置字典和其他工具函数
#关键部位的点坐标 从上到下的遍历:有序字典遍历
FACIAL_LANDMARKS_68_IDXS = OrderedDict([
("mouth", (48, 68)),
("right_eyebrow", (17, 22)),
("left_eyebrow", (22, 27)),
("right_eye", (36, 42)),
("left_eye", (42, 48)),
("nose", (27, 36)),
("jaw", (0, 17))
])
FACIAL_LANDMARKS_5_IDXS = OrderedDict([
("right_eye", (2, 3)),
("left_eye", (0, 1)),
("nose", (4))
])
def shape_to_np(shape,dtype='int')
''' 转换为ndarray'''
#创建68*2
coords = np.zeros((shape.num_parts,2),dtype=dtype)
#遍历每一个关键点 得到坐标
for i in range(0,shape.num_parts):
coord[i] = (shape.part(i).x , shape.part(i).y) #得到每组点的坐标
return coord #返回元素为68个的列表
def visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):
'''展现所有关键部位的闭包 '''
# 创建两个copy
# overlay and one for the final output image
overlay = image.copy() #用来作为每个部位的闭包
output = image.copy() #将所有截出的闭包贴到原图上
# 设置一些颜色区域
if colors is None:
'''设置的固定的颜色'''
colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),
(168, 100, 168), (158, 163, 32),
(163, 38, 32), (180, 42, 220)]
# 遍历每一个区域
for (i, name) in enumerate(FACIAL_LANDMARKS_68_IDXS.keys()):
# 得到每一个点的坐标
(j, k) = FACIAL_LANDMARKS_68_IDXS[name]
pts = shape[j:k]
# 检查位置
if name == "jaw":
# 用线条连起来
for l in range(1, len(pts)):
ptA = tuple(pts[l - 1])
ptB = tuple(pts[l])
cv2.line(overlay, ptA, ptB, colors[i], 2)
# 计算凸包
else:
hull = cv2.convexHull(pts)
cv2.drawContours(overlay, [hull], -1, colors[i], -1)
# 叠加在原图上,可以指定比例 output是复制的没有改变的原图
cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
return output
1.人脸检测器
#1人脸检测
detector = dlib.get._forntal_face_detector()
2.关键点定位器
predictor = dlib.shape_predictor(args["shape_predictor"])
3.读入图片数据预处理
image = cv2.imread(args["image"])
(h,w) = image.shape[:2]
width = 500
r = width/float(w)
dim = (width,int(h*r))
image = cv2.resize(image,dim,interpolation = cv2.INTER_AREA)
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
4.对检测到的人脸进行处理
rects = detector(gray,1)
#遍历检测到的框
for (i,rect) in enumerate(rects):
#对人脸框进行关键点定位
#转化为ndarray
shape = predictor(gray,rect) #之前定义好关键点定位器
shape = shape_to_np(shape) #前面自己写的函数
#遍历每一个部分
for (name, (i, j)) in FACIAL_LANDMARKS_68_IDXS.items():
clone = image.copy()
cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)
#根据位置画点
for (x,y) in shape[i:j]:
cv2.circle(clone,(x,y),3,(0,0,255),-1)
#提取ROI区域
(x,y,w,h) = cv2.boundingRect(np.array([shape[i:j]]))
roi = image[y:y+h,x:x+w]
(h,w) = roi.shape[:2]
width = 250
r = width/float(w)
dim = (width,int(h*r))
roi = cv2.resize(roi,dim,interpolation=cv2.INTER_AREA)
# 显示每一部分
cv2.imshow("ROI", roi)
cv2.imshow("Image", clone)
cv2.waitKey(0)
# 展示所有区域
output = visualize_facial_landmarks(image, shape)
cv2.imshow("Image", output)
cv2.waitKey(0)
疲劳检测
基于ear公式用欧式距离来计算,连续帧并判断
FACIAL_LANDMARKS_68_IDXS = OrderedDict([
("mouth", (48, 68)),
("right_eyebrow", (17, 22)),
("left_eyebrow", (22, 27)),
("right_eye", (36, 42)),
("left_eye", (42, 48)),
("nose", (27, 36)),
("jaw", (0, 17))
])
# http://vision.fe.uni-lj.si/cvww2016/proceedings/papers/05.pdf
def eye_aspect_ratio(eye):
# 计算距离,竖直的
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
# 计算距离,水平的
C = dist.euclidean(eye[0], eye[3])
# ear值
ear = (A + B) / (2.0 * C)
return ear
# 输入参数
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
help="path to facial landmark predictor")
ap.add_argument("-v", "--video", type=str, default="",
help="path to input video file")
args = vars(ap.parse_args())
# 设置判断参数 主要检测由闭上到睁开的过程
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 3 #连续三帧,则算为疲劳
# 初始化计数器
COUNTER = 0
TOTAL = 0
# 检测与定位工具
print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
# 分别取两个眼睛区域 其他部位不用看,只看左右眼睛
(lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS["left_eye"]
(rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS["right_eye"]
# 读取视频
print("[INFO] starting video stream thread...")
vs = cv2.VideoCapture(args["video"])
#vs = FileVideoStream(args["video"]).start()
time.sleep(1.0)
def shape_to_np(shape, dtype="int"):
# 创建68*2
coords = np.zeros((shape.num_parts, 2), dtype=dtype)
# 遍历每一个关键点
# 得到坐标
for i in range(0, shape.num_parts):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords
# 遍历每一帧
while True:
# 预处理
frame = vs.read()[1]
if frame is None:
break
(h, w) = frame.shape[:2]
width=1200 #截取视频中的部分,将人脸变大的
r = width / float(w)
dim = (width, int(h * r))
frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 检测人脸
rects = detector(gray, 0)
# 遍历每一个检测到的人脸
for rect in rects:
# 获取坐标
shape = predictor(gray, rect)
shape = shape_to_np(shape)
# 分别计算ear值
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
# 算一个平均的
ear = (leftEAR + rightEAR) / 2.0
# 绘制眼睛区域
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
# 检查是否满足阈值 将ear值的系数设为0.3
if ear < EYE_AR_THRESH:
COUNTER += 1
else:
# 如果连续几帧都是闭眼的,总数算一次
if COUNTER >= EYE_AR_CONSEC_FRAMES: #连续三帧都出现,将会总数+1
TOTAL += 1
# 重置
COUNTER = 0
# 显示
cv2.putText(frame, "Blinks: {}".format(TOTAL), (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(100) & 0xFF
if key == 27:
break
vs.release()
cv2.destroyAllWindows()