图像增强论文精读笔记-Kindling the Darkness: A Practical Low-light Image Enhancer(KinD)

1. 论文基本信息

  • 论文标题:Kindling the Darkness: A Practical Low-light Image Enhancer

  • 作者:Yonghua Zhang等

  • 发表时间和期刊:2019;ACM MM

  • 论文链接:https://arxiv.org/abs/1905.04161


2. 研究背景和动机

现有的研究方法在低光图像增强都存在或多或少的缺陷,基于直方图均衡化或者Gamma矫正的传统方法几乎没有考虑到真实条件的光照因素,因此生成结果往往不够真实;基于亮度的方法没有考虑到不同亮度区域噪声、颜色扭曲等等问题的影响是不同的。

3. 主要贡献

  • 受Retinex理论的启发,所提出的网络将图像分解为两个组成部分,即反射率(reflectance)和光照(illumination),这将原始空间解耦为两个较小的空间。

  • 训练数据的选择方面,网络是用在不同光线/曝光条件下拍摄的配对图像进行训练的,而不是使用任何真实的反射率和光照信息。

  • 我们设计的模型提供了一个映射函数,可以根据用户的不同需求灵活调整光线水平。所提出的网络还包含一个模块,能够有效地移除在提亮暗区时被放大了的视觉缺陷。

4. 方法和模型

        (1) 网络总体架构图如下。总体分为三大块:分解层、反射图恢复、亮度图调整。其中输入为不同曝光条件的图片对,并且网络的三大块各有其独特的损失函数。

分解层的损失函数主要考虑以下四部分:反射图相似性、亮度图相似性、整体重建性、相互一致性

 反射图恢复部分损失函数公式如下:

亮度图调整部分损失函数如下:

 

5. 个人思考与讨论

        个人粗浅见解,这篇工作的总体架构和RetinexNet架构很相像。但是引入了不同曝光条件的图片对作为训练数据,而不用完整的ground-truth(通常很难获得,而且不同人对正常光亮的定义也是不一样的),作者团队在损失函数的设计上也考虑了很多,是一篇很经典的工作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值