概述
- 作者创建了一个名作KinD的暗光增强网络,分为decomposition network、adjustment network和restoration network三大部分。
- 其中decomposition network利用retinex理论,将输入图像分解成reflectance maps和illumination maps;adjustment network可以通过参数 α α α灵活调整亮度,输出调整过的illumination maps;restoration network负责将之前decomposition network得到的reflectance maps和adjustment network的输出结合,得到最终的增强图像。
- 网络使用paired数据集,输入两张曝光不同的同场景照片,但是并不是以正常曝光的照片作为ground truth,而是以正常曝光照片的reflectance maps作为ground truth。根据retinex理论,一张图片可以分成reflectance maps和illumination maps两部分,不同曝光的图片如果不考虑退化(噪声、颜色失真等),则两者的reflectance maps应该相同,不同的是illumination maps,所以作者使用正常曝光图片的reflectance maps作为ground truth。
- 同时,作者在不同的网络部分中,使用了不同的组合的loss,如MSE loss、SSIM loss等。实验证明,论文的结果在视觉上和定性定量的实验上,都取得了SOTA的效果。
- 时间上,本文是ACM MM 2019论文。
Methodology
datasets
作者这里用LOL dataset