Low-light images enhancement系列:Kindling the Darkness: A Practical Low-light Image Enhancer

本文介绍了一种名为KinD的低光照图像增强网络,它由分解网络、调整网络和恢复网络组成。分解网络应用Retinex理论,调整网络允许灵活的亮度调整,恢复网络整合信息生成增强图像。实验表明,该方法在视觉效果和定量评估上均表现出优越性能,特别是在LOL数据集上的训练和应用。
摘要由CSDN通过智能技术生成

概述

  • 作者创建了一个名作KinD的暗光增强网络,分为decomposition networkadjustment networkrestoration network三大部分。
  • 其中decomposition network利用retinex理论,将输入图像分解成reflectance mapsillumination mapsadjustment network可以通过参数 α α α灵活调整亮度,输出调整过的illumination mapsrestoration network负责将之前decomposition network得到的reflectance mapsadjustment network的输出结合,得到最终的增强图像。
  • 网络使用paired数据集,输入两张曝光不同的同场景照片,但是并不是以正常曝光的照片作为ground truth,而是以正常曝光照片的reflectance maps作为ground truth。根据retinex理论,一张图片可以分成reflectance mapsillumination maps两部分,不同曝光的图片如果不考虑退化(噪声、颜色失真等),则两者的reflectance maps应该相同,不同的是illumination maps,所以作者使用正常曝光图片的reflectance maps作为ground truth
  • 同时,作者在不同的网络部分中,使用了不同的组合的loss,如MSE loss、SSIM loss等。实验证明,论文的结果在视觉上和定性定量的实验上,都取得了SOTA的效果。
  • 时间上,本文是ACM MM 2019论文。
    在这里插入图片描述

Methodology

datasets

作者这里用LOL dataset

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值