练习题-9

问:是否有可微函数 g ( x ) : R → R g(x): \mathbb{R} \to \mathbb{R} g(x):RR, 满足 g ( g ( x ) ) = x 2 − 3 x + 3 g(g(x))=x^2-3x+3 g(g(x))=x23x+3?

解:不存在。反证法。假设有这样的 g g g, 先求 x 2 − 3 x + 3 = x x^2-3x+3=x x23x+3=x得到 x = 1 , 3 x=1, 3 x=1,3. 设 g ( 1 ) = a g(1)=a g(1)=a. 则在题目所给的条件(等式)两边代入 x = 1 x=1 x=1, 得: g ( g ( 1 ) ) = g ( a ) = 1 g(g(1))=g(a)=1 g(g(1))=g(a)=1.

再在等式中代入 x = a x=a x=a, 得: g ( g ( a ) ) = g ( 1 ) = a g(g(a))=g(1)=a g(g(a))=g(1)=a. 所以 a a a也是 g ∘ g g\circ g gg的不动点。故 a = 1 , 3 a=1, 3 a=1,3.

在题目条件两边对 x x x求导,得到 g ′ ( g ( x ) ) g ′ ( x ) = 2 x − 3 (*) g'(g(x))g'(x)=2x-3 \tag{*} g(g(x))g(x)=2x3(*).

如果 a = 1 a=1 a=1, 则上式 ( ∗ ) (*) ()中代入 x = 1 x=1 x=1, 得: ( g ′ ( 1 ) ) 2 = − 1 (g'(1))^2=-1 (g(1))2=1, 这不可能。

如果 a = 3 a=3 a=3, 则在等式 ( ∗ ) (*) ()中代入 x = 1 x=1 x=1, 得 g ′ ( 3 ) g ′ ( 1 ) = − 1 g'(3)g'(1)=-1 g(3)g(1)=1, 而代入 x = 3 x=3 x=3, 则得 g ′ ( 1 ) g ′ ( 3 ) = 3 g'(1)g'(3)=3 g(1)g(3)=3. 矛盾.

所以满足题意的可微函数 g g g不存在。

  • 26
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值