为什么说麻将比围棋难?游戏AI复杂度怎么算

本文探讨了游戏AI的复杂度,指出游戏复杂度与难度并不等价。文章通过比较完美信息游戏(如围棋)和不完美信息游戏(如麻将)的状态空间复杂度、游戏树复杂度、信息集数目和平均大小,阐述了不完美信息游戏的难度。麻将和扑克等游戏由于隐藏信息多,决策难度更高,需要全新的AI方法进行攻克。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过优锐课核心java学习笔记中,我们可以看到,码了很多专业的相关知识, 分享给大家参考学习。

在游戏AI的缘起与进化一文中我们讲到,游戏 AI 的进化始终与 AI 研究相生相伴,这是由于游戏种类丰富,难度和复杂性也很多样,人工智能攻克不同类型的游戏自然也反映了 AI 研究的进展,因此长期以来游戏一直是 AI 研究的黄金测试平台。

随着人工智能逐个攻克双陆棋、国际跳棋、国际象棋、围棋等棋类游戏,AI 仍在继续挑战难度更高的游戏,例如扑克、桥牌、麻将这类不完美信息游戏。那么为什么这类游戏的难度更高呢?如何衡量不同类型游戏的复杂度和难度?在这篇文章里,我们将会为大家仔细解读。

游戏复杂度与游戏难度并不等价

首先需要提醒大家,游戏的复杂度与难度并不完全等价,游戏难度除了与游戏本身的复杂度有关以外,还与战略等多种要素相关,也就是说,数学上更复杂的游戏,玩起来不一定更难。

一般来说,我们可以根据信息的暴露程度将游戏分为两大类:完美信息游戏(Perfect-Information Games)和不完美信息游戏(Imperfect-Information Games)。如果所有的参与者,在游戏的任何阶段都可以访问所有关于游戏(包括对手)状态及其可能延续的信息,那么称这类游戏为完美信息游戏;否则称为不完美信息游戏。围棋、象棋等棋类游戏,对局双方可以看到局面的所有信息,属于完美信息游戏;而扑克、桥牌、麻将等游戏,虽然每个参与者都能看到对手打过的牌,但并不知道对手的手牌和游戏的底牌,也就是说各个对局者所掌握的信息是不对称的,因此属于不完美信息游戏。

完美信息游戏和不完美信息游戏难度的衡量指标通常是有区别的。对于完美信息游戏,通常游戏的复杂度就决定了难度,我们可以用状态空间复杂度(State-Space Complexity)和游戏树复杂度(Game-Tree Complexity)对其难度进行衡量;而对于不完美信息游戏,隐藏信息对于游戏的难度影响很大,我们可以用信息集(Information Set)数目和信息集平均大小对其难度进行衡量。

完美信息游戏:状态空间和游戏树的复杂度

状态空间复杂度(State-Space Complexity)

游戏的状态空间复杂度(SSC)是指从游戏的初始状态开始,可以达到的所有符合规则的状态的总数。例如棋类游戏中,每移动一枚棋子或捕获一个棋子,就创造了一个新的棋盘状态,所有这些棋盘状态构成游戏的状态空间。通常情况下,很难精确地计算出游戏的

<think>好的,用户现在问的是关于棋牌类游戏AI设计模式。我需要先回顾之前的对话历史,看看用户之前的需求是什么。之前他问的是如何用Python写一个斗地主的小程序,涉及图像识别、规则引擎和策略法。现在他转向更一般性的棋牌类游戏AI设计模式,可能是在了解基础后,想深入理解AI设计的不同方法。 用户可能是开发者,或者对游戏AI感兴趣的学习者。他可能想了解常见的AI设计模式,以便应用到自己的项目中,比如斗地主或其他棋牌游戏。深层需求可能包括如何让AI更智能,如何处理游戏的不确定性,或者不同模式的优缺点比较。 接下来,我需要整理棋牌类游戏AI的常见设计模式。首先想到的包括状态空间搜索(如Minimax、蒙特卡洛树搜索)、基于规则的系统、机器学习方法(强化学习)、博弈论策略(纳什均衡)、概模型等。每种模式都有其适用场景和优缺点,需要分别介绍。 用户可能希望了解这些模式的基本概念、如何应用,以及实际案例。例如,蒙特卡洛树搜索在围棋中的成功应用,或者强化学习在扑克中的使用。同时,用户可能关心如何选择合适的设计模式,取决于游戏类型、复杂度等因素。 还需要考虑用户的技术背景。之前的回答提到了Python和OpenCV,用户可能有一定的编程基础,但可能对AI法不太熟悉。因此,解释需要简明扼要,避免过于学术化,同时提供实际例子帮助理解。 此外,用户可能需要了解这些模式的实现点,比如状态空间爆炸问题,实时决策的处理,或者如何平衡探索与利用。这些都是在设计AI时需要考虑的实际问题。 最后,总结不同模式的适用场景,帮助用户根据具体需求选择合适的方案。例如,对于高随机性的游戏,概模型可能更有效;而完全信息的棋类游戏可能更适合状态空间搜索。</think>棋牌类游戏AI设计通常需要结合博弈论、状态空间搜索和概模型等多种技术。以下是常见的核心设计模式及实现思路: --- ### 一、状态空间搜索模式 **核心思想**:通过遍历可能的游戏状态树寻找最优决策 ```python # MiniMax法示例(适用于象棋/五子棋等完全信息游戏) def minimax(node, depth, maximizing_player): if depth == 0 or node.is_terminal(): return evaluate(node) if maximizing_player: value = -infinity for child in node.children(): value = max(value, minimax(child, depth-1, False)) return value else: value = infinity for child in node.children(): value = min(value, minimax(child, depth-1, True)) return value ``` **适用场景**: - 完全信息博弈(如象棋、围棋) - 有限状态空间(通常需要配合剪枝优化) **关键优化**: - Alpha-Beta剪枝 - 置换表(Transposition Table) - 启发式评估函数设计 --- ### 二、蒙特卡洛树搜索(MCTS) **核心思想**:通过随机模拟探索最有潜力的决策路径 ```python # MCTS四步流程伪代码 class MCTSNode: def select(self): # 选择最有价值的子节点 pass def expand(self): # 扩展未探索的节点 pass def simulate(self): # 随机模拟到终局 pass def backpropagate(self, result): # 回传模拟结果 pass ``` **适用场景**: - 状态空间巨大的游戏(如围棋) - 包含概因素的博弈(如扑克) - 需要在线学习的场景 **典型案例**: - AlphaGo的树搜索策略 - 德州扑克AI Libratus的决策模块 --- ### 三、规则驱动模式 **核心思想**:基于专家经验构建决策规则库 ```python # 斗地主出牌规则示例 def should_play_bomb(hand_cards, history): if has_bomb(hand_cards) and enemy_has_winning_chance(history): return True return False ``` **层级结构**: 1. 基础规则(合法出牌判断) 2. 防御规则(阻止对手出牌) 3. 进攻规则(建立优势) 4. 欺骗策略(虚张声势) **适用场景**: - 规则明确的棋牌游戏(如斗地主、桥牌) - 需要快速实现的初期原型 --- ### 四、强化学习模式 **核心思想**:通过试错学习获得最优策略 ```python # Q-Learning更新公式伪代码 Q(s,a) = Q(s,a) + α[r + γ*max(Q(s',a')) - Q(s,a)] ``` **实现要点**: 1. 状态编码(需包含手牌、公共牌、历史动作) 2. 奖励函数设计(赢局+1,输局-1) 3. 探索策略(ε-greedy或UCB) **典型案例**: - DeepMind的星际争霸AI - 德州扑克AI DeepStack --- ### 五、概建模模式 **核心思想**:建立概模型预测对手行为 ```python # 手牌概示例(德州扑克) def calculate_hand_probability(public_cards): remaining_cards = 52 - len(public_cards) possible_combinations = math.comb(remaining_cards, 2) # 计每种牌型的出现概... return probability_dict ``` **关键技术**: - 贝叶斯推理 - 隐含马尔可夫模型 - 范围平衡(Range Balancing) --- ### 六、混合架构模式 **常见组合方案**: ``` 状态空间搜索(快速决策) ↓ 规则引擎(过滤非法动作) ↓ 强化学习模型(长期策略) ↓ 概模型(处理不确定性) ``` **典型案例架构**: ```mermaid graph TD A[游戏状态] --> B{规则验证} B -->|合法动作| C[蒙特卡洛搜索] C --> D[Q值网络评估] D --> E[概模型修正] E --> F[最终决策] ``` --- ### 模式选择指南 | 游戏类型 | 推荐模式 | 复杂度 | 训练成本 | |------------------|----------------------------|--------|----------| | 完全信息棋类 | MCTS+神经网络 | ★★★★★ | 极高 | | 扑克类 | CFR+概模型 | ★★★★☆ | 高 | | 麻将/斗地主 | 规则引擎+强化学习 | ★★★☆☆ | 中等 | | 简单卡牌游戏 | 状态机+规则系统 | ★★☆☆☆ | 低 | --- ### 开发注意事项 1. **状态抽象**:合理设计状态编码(需平衡信息完整性和计复杂度) 2. **实时性要求**:设置决策时间阈值(德州扑克AI通常需在1秒内响应) 3. **反模式识别**:检测对手的bluffing行为 4. **记忆机制**:记录历史对局模式(用于调整策略) 5. **伦理设计**:避免开发用于赌博的AI系统 建议从规则驱动模式入手,逐步引入概模型和强化学习组件。对于商业级AI,通常需要混合多种模式才能达到职业选手水平。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值