Azure AI Search(之前称为 Azure Search 和 Azure Cognitive Search)是一个云搜索服务,提供基础设施、API 和工具,以支持大规模的向量、关键词和混合查询的信息检索。在这篇文章中,我们将深入探讨如何使用 Azure AI Search 完成向量检索,并结合示例代码指导大家如何在实际项目中应用。
技术背景介绍
Azure AI Search 是微软提供的云搜索服务,支持开发者进行海量数据的高效信息检索。它能够处理多种类型的查询,包括向量检索、关键词检索和混合检索,适用于各类大规模数据处理场景。
核心原理解析
Azure AI Search 通过将文本数据转化为向量形式,利用向量空间模型实现高效的相似性计算。这种方式能够在大数据集上快速找到与查询向量相近的结果,提高搜索的准确性和响应速度。
代码实现演示
下面,我们将分步骤讲解如何在 Python 中配置并使用 Azure AI Search。
1. 安装必要的库
首先,确保安装了 langchain-community
和 Azure SDK。
$ pip install -qU langchain-community
$ pip install --upgrade --quiet azure-search-documents azure-identity
2. 导入所需库
import os
from langchain_community.vectorstores.azuresearch import AzureSearch
from langchain_openai import AzureOpenAIEmbeddings, OpenAIEmbeddings
3. 配置 OpenAI 设置
如果您使用的是 OpenAI 或 Azure OpenAI,需要设置相应的 API 密钥和其它相关配置。
# 使用 OpenAI 账户
openai_api_key = "YOUR_OPENAI_API_KEY"
openai_api_version = "2023-05-15"
model = "text-embedding-ada-002"
# 或使用 Azure OpenAI 账户
azure_endpoint = "YOUR_AZURE_OPENAI_ENDPOINT"
azure_openai_api_key = "YOUR_AZURE_OPENAI_KEY"
azure_openai_api_version = "2023-05-15"
azure_deployment = "text-embedding-ada-002"
4. 配置向量存储设置
设置 Azure AI Search 的端点和密钥:
vector_store_address = "YOUR_AZURE_SEARCH_ENDPOINT"
vector_store_password = "YOUR_AZURE_SEARCH_ADMIN_KEY"
5. 创建 Embedding 和向量存储实例
# 使用 OpenAI 的 Embedding
embeddings = OpenAIEmbeddings(
openai_api_key=openai_api_key, openai_api_version=openai_api_version, model=model
)
# 创建向量存储实例
index_name = "langchain-vector-demo"
vector_store = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
embedding_function=embeddings.embed_query,
)
6. 插入文本和执行向量相似性搜索
将文本插入向量存储,并执行相似性搜索:
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt", encoding="utf-8")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
vector_store.add_documents(documents=docs)
# 执行相似性搜索
docs = vector_store.similarity_search(
query="What did the president say about Ketanji Brown Jackson",
k=3,
search_type="similarity",
)
print(docs[0].page_content)
7. 执行混合搜索
# 混合搜索示例
docs = vector_store.hybrid_search(
query="What did the president say about Ketanji Brown Jackson", k=3
)
print(docs[0].page_content)
应用场景分析
Azure AI Search 适用于需要进行高效、精确信息检索的各种场景,例如电子商务网站的商品搜索、知识库系统的信息查询、社交媒体内容的分析等。
实践建议
- 在实现过程中,确保 API 密钥和敏感信息的安全存储。
- 结合具体业务场景充分利用 Azure AI Search 的配置选项,如自定义向量配置和评分配置。
- 定期评估搜索性能和结果准确性,优化索引和查询策略。
如果遇到问题欢迎在评论区交流。
—END—