如何在OpenCV Python中对图像执行位异或操作?

本文详细介绍了如何在OpenCV Python中执行图像的位异或操作。通过具体的步骤和示例,展示了如何使用`cv2.bitwise_xor()`函数来计算两个图像的位异或,并展示了操作结果。此外,提供了完整的Python代码示例和相应的输出图像,帮助读者理解并应用位异或操作。
摘要由CSDN通过智能技术生成

 彩色图像(RGB)有三个通道:红色、蓝色和绿色。图像表示为3维numpy数组。图像的像素值使用8位无符号整数(uint8)存储,范围为“0到255”。

对两个图像执行位异或运算是在相应图像的像素值的二进制表示上执行的。

以下是执行两个图像的位异或操作的语法 –

cv2.bitwise_xor(img1,img2,mask = None)

这里,img1和img2是两个输入图像,mask是一个掩码操作。

步骤

要计算两个图像之间的位异或运算,可以按照以下步骤操作 –

导入所需的库 OpenCV,Numpy 和 Matplotlib 。确保您已经安装了它们。

import cv2
import numpy as np
import matplotlib as plt

使用 cv2.imread() 方法读取图像。图像的宽度和高度必须相同。

img1 = cv2.imread('waterfall.jpg')
img2 = cv2.imread('work.jpg')

使用 cv2.biwise_xor(img1,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值