如何使用OpenCV Python在图像中找到对象的固体度和等效直径?

本文介绍了如何利用OpenCV在Python中计算图像中对象的固体度和等效直径。首先解释了固体度的计算原理,然后详细阐述了计算过程,包括读取图像、转换为灰度、阈值处理、查找轮廓和计算面积。通过两个示例,展示了如何在实际操作中应用这些步骤,并给出了相应的输出结果。
摘要由CSDN通过智能技术生成

 对象的固体度是由轮廓面积与其凸包面积的比率计算得出的。因此,要计算固体度,首先必须找到轮廓面积和凸包面积。可以使用 cv2.contourArea() 函数找到对象的轮廓面积。

等效直径是圆的直径,其面积与轮廓面积相同。可以按以下方式计算固体度和等效直径 –

语法

area = cv2.contourArea(cnt)
hull = cv2.convexHull(cnt)
hull_area = cv2.contourArea(hull)
solidity = float(area)/hull_area
equi_diameter = np.sqrt(4*area/np.pi)

其中, cnt 是图像中对象的轮廓点的numpy数组。

步骤

可以使用以下步骤来计算图像中对象的固体度和等效直径 –

导入所需的库。在以下所有Python示例中,所需的Python库为 OpenCV 。请确保您已经安装了它。

import cv2

使用 cv2.imread() 读取输入图像并将其转换为灰度。

img = cv2.imread('star.png.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

对灰度图像应用阈值处理,以创建二进制图像。调整第二个参数以更好地检测轮廓。

ret,thresh = cv2.threshold(gray,40,255,0)

使用 cv2.findContours() 函数查找图像中的轮廓。

contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

选择轮廓“ cnt ”或循环遍历所有轮廓。计算对象的固体度和等效直径。首先计算轮廓面积和凸包面积。

area = cv2.contourArea(cnt)
hull = cv2.convexHull(cnt)
hull_area = cv2.contourArea(hull)
solidity = float(area)/hull_area
equi_diamete
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值