实体识别与关系抽取是自然语言处理(NLP)中的两个重要任务,通常被视为知识图谱构建的基础技术。
实体识别(Named Entity Recognition, NER):
实体识别的目标是从文本中识别出具有特定意义的实体,并将其分类到预定义的类别中。这些实体通常包括人名、地名、机构名、时间表达式、货币值等。实体识别的过程可以分为两个主要步骤:实体边界识别和实体类别识别。在实际应用中,实体识别技术广泛应用于信息检索、智能问答、命名实体识别系统等领域。
关系抽取(Relation Extraction, RE):
关系抽取的目标是从文本中识别并提取实体之间的关系。这些关系可以是简单的二元关系,也可以是更复杂的多元关系。关系抽取任务通常需要在已知实体的基础上,通过分析文本语义和上下文信息,提取实体之间的关系。关系抽取的方法可以分为基于规则的方法、统计机器学习方法和深度学习方法
传统的实体识别与关系抽取需要编程实现,非常麻烦,而且效果也不是特别好。借助kimi这样的大模型AI工具,不仅简单就可以实现实体识别与关系抽取,还有更好的效果。
将文本文件上传,然后在kimi中输入提示词:
对文本内容进行命名实体识别(Named Entity Recognition, NER)和关系抽取(Relation Extraction, RE),将识别到的实体【元语智能】和其他实体之间的关系按照严谨的实体关系三元组的方式进行返回,规则是:实体1,关系名,实体2,输出格式为markdown表格
Kimi很快给出一个表格的回复:
实体1 | 关系名 | 实体2 |
---|---|---|
元语智能 | 是 | 国内首个ChatGPT公司 |
元语智能 | 推出 | ChatYuan |
元语智能 | 联合创始人兼COO | 朱雷 |
朱雷 | 提到 | 大模型发展趋势 |
元语智能 | 注册资本 | 100万元人民币 |
元语智能 | 持股50%的大股东 | 徐亮 |
徐亮 | 是 | 杭州敬天爱人管理咨询合伙企业的大股东 |
杭州敬天爱人管理咨询合伙企业 | 投资了 | 元语智能 |
西湖心辰(杭州)科技有限公司 | 是 | 元语智能的股东 |
元语智能 | 从事 | 软件和信息技术服务业 |
元语智能 | 推出 | ChatYuan功能型对话大模型API |
元语智能 | 基于 | PromptCLUE模型 |
请注意,上述表格是根据提供的文本内容进行的命名实体识别和关系抽取,可能存在不同的解释方式。