点击蓝字
关注我们
AI TIME欢迎每一位AI爱好者的加入!
冷启动问题是推荐系统中一个常见的挑战,因为对于系统中的新用户来说,他们可观测到的交互是非常有限的。
而为了应对这一挑战,最近的许多工作开始将元学习的思想引入到推荐场景中,他们旨在通过对不同用户的偏好进行学习来获得泛化性强的先验知识,以便模型可以通过少量的训练数据快速适应系统中的新用户。
然而,推荐系统很容易被偏见和不公平左右,尽管元学习在冷启动推荐性能方面取得了成功,但公平性问题却在很大程度上被忽视了。
在本文中,我们提出了一个名为 CLOVER 的综合性公平元学习框架,以确保冷启动推荐模型的公平性。
我们系统地研究了推荐系统中的三种公平性——个体公平、反事实公平和群体公平,并提出通过多任务对抗学习的方法来提高这三种公平性。
在不同真实数据集上的实验评估表明,本文所提出的CLOVER方案明显优于其他相关方法,在不降低冷启动推荐性能的情况下成功提高了模型的综合公平性。
本期AI TIME PhD直播间,我们邀请到伊利诺伊大学香槟分校 (UIUC)博士生——魏天心,为我们带来报告分享《综合的公平冷启动推荐系统》。
魏天心:
美国伊利诺伊大学香槟分校 (UIUC)一年级博士生。主要研究方向为可信机器学习、图数据挖掘及其在真实场景中的应用,在KDD, SIGIR, ICDM等机器学习与数据挖掘领域顶会上发表过多篇论文。个人主页:https://weitianxin.github.io/
1
Background
Age of Information Explosion
当前是一个信息爆炸的时代,很容易出现信息过载的问题。目前Youtube上已存在超过8亿个视频,人工选择十分困难。所以,人们开始研究推荐系统来研究用户的偏好,如亚马逊、Facebook等等。
Cold-start Recommendation
本文关注的是一个冷启动的推荐问题,常见的一个挑战是新用户加入到系统之中却拥有较少可利用的交互。
之前有人将元学习方法引入到场景之中来改善冷启动的性能,以期望获取一些general knowledge,模型也可以快速迭代到未来的新用户上。
尽管这些方法效果很好,但是他们的fairness issues问题也被忽略了,这也是我们要研究的问题。
Comprehensive Fairness
现在的推荐系统中由很多关于公平的定义,如个体的公平