「Z计划」是智谱面向未上市初创企业与优秀独立开发者/团队,提供 Tokens 赞助、投资支持和技术支持等资源的创新加速计划。面向全球,持续招募中!🐋(点击报名)「星连资本(Z基金)」是专注于大模型生态的风险投资基金,侧重早期,管理规模 15 亿元人民币。
4 月 17 日晚 7 点,Z Next 直播间迎来了一场关于 “AI 学习产品如何真正落地” 的深度对话。
由智谱 Z计划邓瑞恒与芥末堆首席外卖官、知智教育创始人李卓围绕多邻国(Duolingo)展开对谈。
拆解这款全球 DAU 超 4000 万的 “非典型教育产品” 如何用游戏化设计、隐性 AI 技术颠覆传统学习模式。
解析多邻国作为 AI 学习产品的成功逻辑,强调 “隐性 AI 落地”“低成本交互”“习惯驱动” 等核心策略,为 AI 教育创业者提供场景洞察与产品链路设计经验。
这场持续一个半小时的直播干货密集,既有数据复盘,也有创业者视角的落地思考。 🐋
关键词标签:
#AI教育产品设计、#隐性技术落地、#游戏化学习链路、#用户习惯培养、#场景洞察与成本控制
#1.
对话要点
1.数据支撑优势:
2024 年 DAU 超 4000 万、MAU 过亿,付费渗透率 8.14%(950 万付费用户 / 1.167 亿月活),订阅收入同比增长 40%,自由现金流利润率达 42%,商业化效率高于多数教育科技公司。
其用户规模和付费渗透率已达到全球教育类产品领先水平,且占据全球在线语言学习市场 50% 的收入和 60% 的用户量。
2.AI 落地理念:
好的 AI 是 “看不见的”,通过自研 BirdBrain 模型(基于 LSTM 算法实时预测用户答题正确率,动态调整 20% 课程难度)实现自适应出题、个性化测评等隐性功能融入学习流程,而非显性宣传技术概念。
100% AI 生成题目,让个性化练习的边际成本趋近于零。
3.游戏化设计本质:
聚焦 “习惯>效果”,通过连续登录保护(如可冻结 2 天未学习记录的 “streak freeze” 道具)、低难度交互(如拼图式听写、60 秒碎片化练习)降低参与门槛,利用一致性心理(用户将 “每日学习” 内化为身份认同)驱动长期使用。
4.场景洞察核心:
专注解决 “用户为什么持续学”,而非 “如何高效学”。
并将 AI 自然融入到相关业务流程中,例如,多数语言学习者在与真人交流时存在开口压力(多邻国产品设计团队观察到,用户对 “被评判” 的顾虑显著影响练习频率),动画形象能有效降低心理门槛,让用户更愿意主动输出;
动画数字人的开发与运维成本远低于真人数字人,且能实现大部分基础交互的需求。
5.创业者启示:
拆解产品链路(如 “连续登录→获得奖励→社交分享” 闭环)、控制交互成本(如语音对话生成作文)、关注新课标下的能力培养需求,同时借鉴多邻国的多臂老虎机算法优化推送策略,提升用户触达效率。
#2.
对谈摘要
Q1:为什么称多邻国为 “AI 学习第一产品”?有哪些关键指标支撑?
A:这一说法带有主观判断,但从数据和产品逻辑来看:
用户规模:DAU 超 4000 万,MAU 过亿,是少数在用户活跃度上能比肩中国教育产品的国际应用,2024 年 Q4 数据显示其用户活跃度持续攀升。
收入与付费率:2024 年全年收入 7.48 亿美元,付费渗透率 8.14%,远超国内多数教育产品(如 K12 产品普遍低于 5%),接近流媒体平台平均水平(如 Netflix 约 15%),且家庭套餐(占订阅 23%)的用户终身价值(LTV)显著更高。
AI 隐性落地:多邻国的 AI 通过BirdBrain 模型实现个性化出题(100% AI 生成题目)和自适应学习,例如根据用户水平动态调整对话难度的 “Video Call with Lily” 功能,让技术自然融入学习流程,用户无需感知 “AI 的存在”,却能获得精准训练。
Q2:多邻国的游戏化设计到底是什么?为何其他产品模仿难见效?
A:游戏化设计的核心是 “低成本交互 + 用户习惯绑定”:
降低学习门槛:通过碎片化练习(如等红绿灯时完成 3 道口试题)、拼图式听写等简单交互,让用户轻松启动学习习惯培养。同时,反馈是习惯培养的动力,多邻国连手机振动马达都经过调校,不同成就对应不同振动触感(如做对题的短促震动 vs 解锁宝箱的长振),强化即时反馈。
一致性心理驱动:连续登录奖励、段位保护机制利用用户追求行为一致性的心理(如 “身份依恋理论”—— 用户将连续登录视为自我认同的一部分),形成长期习惯。数据显示,连续登录 10 天后,用户持续学习的概率提升50%,且 “连胜保护道具” 将用户中断焦虑降低 60%。
链路整合能力:将排行榜、积分、成就系统等单点功能串联成完整的 “激励 - 反馈 - 持续” 闭环。例如,联赛系统(青铜→钻石段位)结合竞争心理与进步感,而其他产品常停留在表面模仿(如打卡奖励),未触及用户深层心理需求(如身份认同、社交压力)。
Q3:多邻国与国内 AI 教育产品(如口语陪练、作文批改)的核心差异有哪些?
A:核心差异在于场景洞察与交互成本控制:
国内产品痛点:主打 “AI 个性化”(如实时口语纠错、作文生成),但场景设计来源于产品洞察,而不是教学洞察。例如,AI 数字人多模仿真人形象,忽略用户对 “无压力练习” 的需求 ——多数学习者羞于与真人交流,动画形象反而让开口率提升。
多邻国优势:聚焦 “学习习惯>短期效果”,通过低难度、高频次的练习(80% 为简单题)建立胜任感,先让用户 “愿意学”,再逐步提升能力。其 “大冒险” 游戏化任务与经典 IP 互动,使学习趣味性提升 40%,而国内产品常追求 “高效提分”,忽视用户持续参与的动力。
Q4:AI 在教育中的核心竞争力是什么?与传统在线教育产品有何不同?
A:AI 教育的核心竞争力在于 “know-how 链路 + 成本重构”:
传统教育依赖资源与规模:如题库、名师、营销投流,核心是 “资源壁垒”。
AI 教育依赖场景与交互:通过 AI 降低优质教育的边际成本(如语音交互替代一对一辅导、AI 生成个性化试题),并基于用户行为数据动态优化学习路径。同时,继承了多邻国以往的交互洞察,例如将听写练习的交互成本降至 “5 岁儿童都能理解” 的拼图模式,实现跨年龄段覆盖。
Q5:如何看待 AI 教育产品的 “幻觉问题” 与落地挑战?
A:AI 在教育中的落地需区分 “信息处理” 与 “知识应用”:
信息类场景(如语言练习、逻辑推导):AI 表现优异,可通过隐性化设计(如多邻国的自适应出题)提升学习体验,即使出现 “幻觉”(如语法错误),对初级学习者影响微乎其微,因用户核心需求是 “无压力练习” 而非 “绝对正确”。
知识类场景(如学习能力提升、新知获取):技术开发者很容易陷入模型能力、数据规模的误区。但是有一个思路是,现在的模型能力,对于语言类教育完全够用。但是难点在于,不同语言、不同场景、对应不同的能力,它的学习know-how是否是多年验证有结果、且是行业顶级的;
Q6:从多邻国的实践中,AI 教育创业者们可以抄走什么?
A:关键在于 “小步快跑 + 场景深耕”:
聚焦交互创新:模仿多邻国 “低门槛交互”(如语音对话写作文、碎片化练习),降低用户参与成本。例如,三年级学生可通过语音输入完成作文,AI 实时引导思路,5 分钟产出高质量内容。
拆解产品链路:将游戏化、AI 推荐、社交激励等功能串联成闭环,而非单点堆砌。例如,通过 “连续登录→获得奖励→社交分享→吸引新用户” 形成自增长,利用 “四维留存指标”(CURR/NURR/RURR/SURR)精细化运营不同用户分层。
术语解释:
白帽 / 黑帽游戏化理论:白帽指通过探索欲、创造欲等正向激励驱动用户(如解锁新关卡);黑帽指利用虚荣、恐惧等压力型心理(如排行榜降级机制),需平衡使用避免体验恶化(如多邻国设置 “连胜保护” 降低黑帽负向压力)。
脚手架理论:教育中为用户提供逐步提升的支撑结构,如多邻国 80% 简单题 + 20% 进阶题的难度配比,让用户在胜任感中自然进步,避免因难度过高而放弃。
#3.
AI 教育的本质,是让 “学习反人性” 变成 “学习顺人性”
多邻国的成功,本质上是对 “学习反人性” 的破解 —— 它用游戏化让坚持变得容易,用隐性 AI 让进步变得自然,用低门槛交互让所有人都能参与。
这给行业提了个醒:AI 教育的核心不是技术竞赛,而是 “理解人”—— 理解用户为什么放弃、为什么坚持,理解学习习惯背后的心理机制。
正如直播中提到的:“当你看到有人在等红绿灯时用多邻国刷题,就会明白,好的学习产品不是让用户‘努力学习’,而是让用户‘忍不住学习’。”
这或许就是 AI 时代教育产品的终极目标 ——让学习像刷短视频一样 “顺人性”,但比短视频更有价值
互动话题:
你多邻国打卡多少天了?觉得它的 “学习上瘾” 机制能复制到其他领域吗?评论区留言讨论~🙋♂️
申请Z计划&Z基金🙋
点个关注👆,解锁更多 AI 落地案例
—end—
内容来源|「Z Next 创造营」对谈直播:邓瑞恒、李卓
排版 | 王福多
审阅 | 邓瑞恒
*本文根据直播内容整理,嘉宾观点不代表平台立场