论文名称:Co-GAT: A Co-Interactive Graph Attention Network for Joint Dialog Act Recognition and Sentiment Classification
推荐理由:本文介绍的是来自哈工大赛尔实验室刘挺老师和车万翔老师组在AAAI2021上的工作。在对话系统中,对话行为识别和情感分类是捕获说话人意图的两个相关任务,其中对话行为和情感可以分别指示显式意图和隐式意图。对话上下文信息(上下文信息)和相互交互信息是促成两个相关任务的两个关键因素。不幸的是,现有方法都没有同时考虑两个重要的信息来源。在本文中,作者提出了一个协同交互图注意力网络(Co-GAT)来共同执行这两个任务。核心模块是一个建议的协同交互图交互层,其中构建了交叉话语连接和交叉任务连接,并相互迭代更新,从而可以同时考虑这两种类型的信息。
论文链接:https://www.aminer.cn/pub/5fe5bf3b91e011e85bd969e5
会议链接:https://www.aminer.cn/conf/aaai2021
订阅了解更多论文信息,定制您的个人科研动态信息流:https://www.aminer.cn/user/notification
#AAAI 2021# #论文# #AMiner#