AMiner平台由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。系统2006年上线,吸引了全球220个国家/地区1000多万独立IP访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。
WWW 2021 论文推荐
Trav-SHACL: Efficiently Validating Networks of SHACL Constraints(Trav-SHACL:有效地验证SHACL约束的网络)
论文链接:https://www.aminer.cn/pub/6006cb8f91e0111a1b6a2492/?conf=www2021
推荐理由: 知识图谱作为网络数据的表达式结构在研究中出现,它的潜力以及对促进其创建、策划和理解生态系统的需求,在不同的领域(如生物医学)已得到证实。形状约束语言(SHACL)是W3C对RDF知识图谱完整性约束的推荐语言。SHACL能够对知识图谱进行质量评估,将完整性约束建模为一个形状的网络,其中一个形状包含要由相同实体完成的约束。在验证过程中,SHACL形状模式的验证会面临着可操作性的问题。因此,作者提出了Trav-SHACL,一个能够规划形状模式的遍历和执行的SHACL引擎,其方式是尽早发现无效的实体,并尽量减少不必要的验证。Trav-SHACL对形状模式中的形状进行重新排序,以实现高效验证,并重写目标和约束查询,以快速检测无效实体。Trav-SHACL在27个测试平台上对多达3400万个三要素的知识图谱进行了经验评估。实验结果表明,Trav-SHACL逐渐表现出高性能,与目前的技术水平相比,验证时间减少了28.93倍。
Elo-MMR: A Rating System for Massive Multiplayer Competitions(Elo-MMR: 大规模多人游戏竞赛的评级系统)
论文链接:https://www.aminer.cn/pub/60641ca69e795e72406b65f4/?conf=www2021
推荐理由: 技能评估机制,俗称评级系统,在竞技体育和游戏中发挥着重要作用。它们提供了一个衡量选手技能的标准,激励了选手的竞争表现,并实现了平衡对决。在本文中,作者提出了一个新的贝叶斯评级系统,广泛适用于具有离散排名的比赛形式,如在线编程比赛、障碍赛和视频游戏。该系统的简单性使作者能够证明其稳健性和运行时间的理论界限。通过实验,该评级系统在预测准确性方面超过了现有的系统,计算速度也比现有的系统快了一个数量级。
Target-adaptive Graph for Cross-target Stance Detection(用于跨目标姿态检测的目标自适应图形)
论文链接:https://www.aminer.cn/pub/60641d2b9e795e72406b6635/?conf=www2021
推荐理由: 由于文本中表达的立场往往取决于目标,其在观点性评论/主张的立场检测中起着至关重要的作用。在实践中,作者需要处理在注释的训练数据中未见过的目标。因此,检测一个未知的或未见过的目标的立场是一个重要的研究问题。本文提出了一种新的方法,即自动识别和调整一个词在姿态表达中相对于特定目标所扮演的依赖目标和不依赖目标,从而实现跨目标的姿态检测。该工作探索了一种新的解决方案,即为每个句子构建异质的目标适应性语用学依赖图(TPDG),以实现对给定目标的依赖。作者构建了一个目标内图,以产生针对不同目标的固有语用学依赖性。此外,还构建了另一个跨目标图,以发展所有目标词的通用性,从而促进对未知目标的主导词级姿态表达的学习。
AMiner,AI赋能的学术搜索平台:https://www.aminer.cn/
#AMiner# #论文#