大模型(LLM)是一种人工智能模型,旨在理解和生成人类语言。它们在大量的文本数据上进行训练,可以执行广泛的任务,包括文本总结、翻译、情感分析等等。LLM的特点是规模庞大,包含数十亿的参数,帮助它们学习语言数据中的复杂模式。这些模型通常基于深度学习架构,如转化器,这有助于它们在各种NLP任务上取得令人印象深刻的表现。
本周大模型周报,包括多篇论文综述,模型推理、多模态等;清华和微软分别发布了模型评测相关论文,其中微软论文“透露”了顶级模型参数,4o-mini只有8B,Claude 3.5 Sonnet有175B;DeepSeek-V3技术报告火爆全球,Github 狂吸17K Star。更多论文详情请查看专题:
https://www.aminer.cn/topic/6780f061b98b9e5add9410f4
为了方便大家阅读,只列出了论文标题、AMiner AI综述等信息,如果感兴趣可点击查看原文,PC端数据同步(收藏即可在PC端查看),每日新论文也可登录小程序查看。
如果想要对某篇论文进行深入对话,可以直接复制论文链接到浏览器上或者直达AMiner AI页面:
https://www.aminer.cn/chat/g/ex