【手撕STL】AVL树

AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,找到了解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

AVL树的性质:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O(logN),搜索时间复杂度O(logN)。

注:平衡因子=右子树的高度-左子树的高度

平衡因子更新规则:

  • 插入更新的节点在父亲的左边,父亲平衡因子–;插入更新的节点在父亲的右边,父亲平衡因子++
  • 父亲的平衡因子更新以后是-1或者1,说明父亲所在子树的高度变了,需要继续往上更新
  • 父亲的平衡因子更新以后是0,说明父亲所在子树的高度没变,不需要继续往上更新
  • 父亲的平衡因子更新以后是-2或者2,说明父亲所在子树已经不平衡了,需要旋转处理使它平衡
  • 更新以后,更新到了根节点就不需要在更新了

AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

a,b,c是高度为h的AVL子树,他们有无数种情况,只要在a中插入节点,a的高度变为h+1,就会引发右单旋(h>=0)

右单旋操作:

  1. b子树变成60的左子树
  2. 60成为30的右子树,30成为这棵树的根
  3. 30和60的平衡因子变为0

新节点插入较高右子树的右侧—右右:左单旋
在这里插入图片描述
a,b,c是高度为h的AVL子树,只要c这棵子树的高度变为h+1,就会引发左单旋

左单旋操作:

  1. b子树变成30的右子树
  2. 30成为60的左子树,60成为这棵树的根
  3. 30和60的平衡因子变为0

新节点插入较高左子树的右侧—左右:先左单旋再右单旋
在这里插入图片描述
操作:

  • 先以30为旋转点,进行左单旋
  • 以90作为旋转点进行右单旋

新节点插入较高右子树的左侧—右左:先右单旋再左单旋
在这里插入图片描述

操作:

  • 先以90为旋转点,进行右单旋
  • 以30作为旋转点进行左单旋

双旋平衡因子更新问题:
在这里插入图片描述
双旋以后的结果:

  • b变成30的右边
  • c变成60的左边
  • 30和90分别变成60的左边和右边,60成为新的根

总结:

  • 旋转的本质:在遵循搜索树的规则情况,让左右均衡,并且降低整棵树的高度
  • 更新平衡因子的过程中,引发旋转的路径是直线就是单旋,如果是折线就是双旋

总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
  • 当pSubR的平衡因子为1时,执行左单旋
  • 当pSubR的平衡因子为-1时,执行右左双旋
  1. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
  • 当pSubL的平衡因子为-1是,执行右单旋
  • 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

AVL树的实现

#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<assert.h>
#include<iostream>
using namespace std;

template<class K,class V>
struct AVLTreeNode
{
	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}

	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	int _bf;   //balance factor= 右树的高度-左树的高度
};



template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree()
		:_root(nullptr)
	{}
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		//控制树的平衡
		
		while (parent)
		{
			//更新平衡因子
			if (parent->_left == cur)
				parent->_bf--;
			else
				parent->_bf++;
			//检查父亲的平衡因子
			//父亲所在子树的高度不变,不影响祖先,跟新结束

			if (parent->_bf == 0)
				break;
			//父亲所在子树高度变了,继续往上更新
			else if (parent->_bf == -1 || parent->_bf == 1)
			{
				cur = parent;
				parent = cur->_parent;
			}
			//父亲所在子树的出现了不平衡,需要旋转处理
			else if (parent->_bf == -2 || parent->_bf == 2)
			{
				if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				else
				{
					assert(false);
				}
				break;


			}
			
			else
			{
				assert(false);
			}
		}
		return true;
	}


	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		
		parent->_left = subLR;
		if (subLR)
		{
			subLR->_parent = parent;
		}
		Node* ppNode = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;
		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
				ppNode->_left = subL;
			else
				ppNode->_right = subL;

			subL->_parent = ppNode;
		}
		subL->_bf = parent->_bf = 0;
	}
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}
		Node* ppNode = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;
		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
				ppNode->_left = subR;
			else
				ppNode->_right = subR;

			subR->_parent = ppNode;
		}
		subR->_bf = parent->_bf = 0;
	}

	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
	int Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		return leftHeight > rightHeight ? ++leftHeight : ++rightHeight;
	}
	bool IsBalance()
	{
		return _IsBalance(_root);
	}
private:

	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
			return true;
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		if (rightHeight - leftHeight != root->_bf)
			cout << "平衡因子异常:" << root->_kv.first << endl;
		return abs(rightHeight - leftHeight) < 2 && _IsBalance(root->_left) && _IsBalance(root->_right);
	}

	Node* _root;

};

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
  • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  1. 验证其为平衡树
  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
  1. 验证用例
  • 常规场景:{16, 3, 7, 11, 9, 26, 18, 14, 15}
  • 特殊场景:{4, 2, 6, 1, 3, 5, 15, 7, 16, 14}

AVL树的删除:

  • 按二叉搜索树的思路进行删除
  • 更新平衡因子(删除左节点,该父亲节点++;删除右节点,该父亲节点–)
  • 当父亲节点平衡因子为1或者-1时,不需要往上更新;当父亲节点平衡因子为0时,需要往上更新
  • 如果出现不平衡,进行旋转(注意父节点的平衡因子(高度变了))

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即logN 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

  • 39
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 33
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值