斯坦福大学发布最新的AI报告《2024年人工智能指数报告》,报告详尽记录了技术革新、社会影响、政策趋势、以及AI对工作和生活方式的深远影响。
报告指出:
1.人工智能在某些任务上胜过人类,但并非在所有任务上。
人工智能在多个领域已经展现出超越人类的表现,包括图像分类、视觉推理和英语理解等方面。然而,它在竞赛级数学、视觉常识推理和规划等更复杂的任务上依旧落后。
2、工业界继续主导人工智能前沿研究。
2023年,工业界产生了51个值得关注的机器学习模型,而学术界仅仅贡献了15个模型。产学界合作产生了21个值得关注的模型,再创历史新高。
3、前沿模型变得更加昂贵。
根据 AI Index 的估算,最先进的人工智能模型的训练成本已经达到了前所未有的水平。例如,OpenAI 的 GPT-4 估计使用了价值 7800 万美元的计算资源进行训练,而谷歌的 Gemini Ultra 的计算成本则高达 1.91 亿美元。
4、美国成为顶级人工智能模型的主要来源国。
2023 年,61 个著名的人工智能模型源自美国的机构,超过欧盟的 21 个和中国的 15 个。美国也仍然是人工智能投资的主要聚集地,2023年美国人工智能领域的投资总额是中国的近9倍。
5、严重缺乏对 LLM 责任的可靠和标准化评估。
AI Index 的最新研究显示,负责任的人工智能严重缺乏标准化。包括 OpenAI、谷歌和 Anthropic 在内的领先开发商主要根据不同的负责任人工智能基准测试他们的模型。这种做法使系统地比较顶级人工智能模型的风险和局限性的工作变得更加复杂。
6、生成式人工智能投资猛增。
尽管去年人工智能私人投资整体下降,但对生成式人工智能的投资激增,比 2022 年(约 30 亿美元)增长了近八倍,达到 252 亿美元。生成式人工智能领域的主要参与者,包括 OpenAI、Anthropic、Hugging Face 和 Inflection,都获得了一轮可观的融资。
7、人工智能提高了工人的生产力并带来了更高质量的工作。
2023 年,多项研究评估了人工智能对劳动力的影响,表明人工智能可以让打工人更快地完成任务,并提高他们的产出质量。这些研究还表明,人工智能有可能缩小低技能和高技能工人之间的技能差距。还有一些研究警告说,在没有适当监督的情况下使用人工智能可能会起到负面作用。
8、得益于人工智能,科学进步进一步加速。
2022 年,人工智能开始推动科学发现。然而,2023 年,与科学相关的更重要的人工智能应用启动——使算法排序更高效的 AlphaDev、促进材料发现过程的 GNoME、可在一分钟内提供极其准确的 10 天天气预报的 GraphCast、成功对 7100 万种可能的错义突变中的约 89% 进行分类的 AlphaMissence。
9、美国人工智能法规数量急剧增加。
2023 年,全球立法程序中有 2175 次提及人工智能,几乎是上一年的两倍。美国AI相关法规的数量在过去一年过去五年中大幅增加。2023 年,AI相关的法规有 25 项,而 2016 年只有 1 项。仅去年一年,AI相关法规的总数就增长了56.3%。
10、全球各地的人们对人工智能的认识加深,也更加紧张焦虑。
市场调研公司益普索(Ipsos) 的一项调查显示,在过去一年中,认为人工智能将在未来 3-5 年内极大影响他们生活的人,比例从 60%上升到 66%。此外,52% 的人对人工智能产品和服务感到焦虑,比 2022 年上升了 13 个百分点。美国皮尤研究中心的数据显示,52%的美国人表示对人工智能的发展感到担忧,而不是兴奋,这一比例高于2022年的37%。