Pytorch从零开始实现线性回归

文章介绍了线性模型在机器学习中的应用,特别是线性回归模型。通过Tensor和PyTorch的autograd功能,演示了如何生成数据集、构建线性回归模型、初始化参数、定义损失函数和优化算法,并讨论了小批量数据大小的选择对训练的影响。
摘要由CSDN通过智能技术生成

线性模型(Linear Model) 是机器学习中应用最广泛的模型,指通过样本特征的线性组合来进行预测的模型。

给定一个d维样本 [ z 1 , ⋅ ⋅ , z a ] T [z_1,··,z_a]^T [z1⋅⋅,za]T,其线性组合函数为
f ( x , w ) = w 1 x 1 + w 2 x 2 + ⋯ + w d x d + b = w T x + b , \begin{aligned}f(\mathbf{x},\mathbf{w})&=w_1x_1+w_2x_2+\cdots+w_d x_d+b\\ &=\mathbf{w}^T\mathbf{x}+b,\end{aligned} f(x,w)=w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值