篇幅所限,本文只提供部分资料内容,完整资料请看下面链接
https://download.csdn.net/download/AI_data_cloud/89038277
资料解读:智慧能源 (电力) 大数据平台建设方案
在当前数字化与绿色发展的时代浪潮下,能源领域的变革至关重要。智慧能源(电力)大数据平台建设方案应运而生,它紧密贴合时代需求,对能源行业的发展意义深远。
从政策背景来看,十九届五中全会提出了 “十四五” 经济社会发展的诸多关键目标,如双循环发展、数字化发展以及绿色低碳发展等,这些都与能源发展紧密相连。在 “绿色低碳发展” 方面,要求生产生活方式绿色转型成效显著,能源资源配置更加合理、利用效率大幅提高 。在此大背景下,国家及各省市纷纷出台相关政策推动能源大数据中心的建设。2015 年 9 月,国务院印发《促进大数据发展行动纲要》,明确了大数据在社会治理、经济运行、民生服务等多领域的发展方向;2017 年 12 月,内蒙古自治区人民政府办公厅印发《内蒙古自治区大数据发展总体规划(2017 - 2020 年)》;2019 年底,某省市成立能源规划发展研究中心并同步建设能源大数据中心;2020 年 9 月,某省市发展改革委印发能源大数据中心建设工作方案 。这些政策为智慧能源(电力)大数据平台的建设提供了坚实的政策基础和发展契机。
该平台的建设目标十分明确。其一,构建能源全数据基础,借助大数据技术全面掌握电力能源产业数据,打通 “发 - 输 - 配 - 用” 数据链条,实现对电力生产到消费终端整体运行态势的精准把控。其二,实现数据算法应用,运用大数据、云计算等技术,深度挖掘数据价值。其三,打造产业生态体系,通过大数据技术赋能现代电力产业,协调资源、产量、传输能力与消费需求之间的关系,提升电力系统经济效率,推动构建清洁、低碳、安全、高效的现代电力产业体系。
在建设情况方面,平台的系统架构设计科学合理。数据采集层支持人工填报、文件上传和系统对接等多样化采集方式,能高并发接收海量数据,并通过灵活的规则引擎和模型化处理,实现对不同行业、设备的数据解析和存储。大数据存储层采用多种数据库相结合的方式,如 HDFS、Hive、Postgresql 等,满足不同类型数据的存储需求。大数据分析层运用 Spark ML、TensorFlow + Keras、Flink ML 等技术,实现运行态势分析、风险预测等功能 。业务应用服务层涵盖发电、输电、用电等多个板块,为用户提供丰富的服务。前端交互层采用 SPA 框架 + 组件化开发,后端基于 Spring Cloud 微服务框架并采用容器化部署,提升了系统的可维护性和可扩展性。
平台具有多个功能模块,以八板块、三层级、三平台的架构呈现。八板块包括电力开发、生产、传输等多个领域;三层级实现信息的分层展示,满足不同用户的需求;三平台即 PC 平台、移动端平台、大屏系统,各自具备不同的展示特点和功能。大屏可视化展示内容丰富,涵盖电力行业发展及运行的多个关键指标,如装机容量、运行频率、电力经济指标等,为决策提供直观依据。PC 端和手机 APP 则提供个性化的图表展示和数据查询功能,方便用户随时随地获取信息。
平台的亮点突出。它涵盖发输配用全过程,打破数据源的业务和行政壁垒,整合多领域数据,构建了完善的指标体系。同时,注重数据质量,基于 PDCA 理论建立数据质量检核流程,利用规则引擎技术保障数据质量。在功能拓展和技术展望方面,平台计划开展能效能耗统计、电力数据服务等多项业务。能效能耗统计通过对重点用能单位的能耗监控,助力能源利用效率优化;电力数据服务则为市场成员、电网企业、市场监管等提供多方面的支持。此外,还将引入三维可视化、人工智能助手等先进技术,提升平台的管理和服务水平。
智慧能源(电力)大数据平台建设方案具有重要的战略意义和广阔的发展前景,它将为能源行业的数字化转型和可持续发展注入强大动力。接下来请您阅读下面的详细资料吧。