用python代码实现ChatGPT平台和剪映/百度AIGC平台制作短视频的自动化的讨论

思路

 

  1. 使用ChatGPT平台生成短视频的文本描述
  2. 将文本描述传入剪映/百度AIGC平台,生成短视频

代码

使用ChatGPT平台生成短视频的文本描述

import openai
openai.api_key = "YOUR_API_KEY"

def generate_video_description(prompt):
    completions = openai.Completion.create(
        engine="text-davinci-002",
        prompt=prompt,
        max_tokens=1024,
        n=1,
        stop=None,
        temperature=0.5,
    )

    message = completions.choices[0].text.strip()
    return message

使用剪映/百度AIGC平台生成短视频

# 使用剪映平台生成短视频
from jianyingpro import JianyingPro

def generate_video_with_jianyingpro(description):
    jianying = JianyingPro()
    jianying.create_project()
    jianying.add_text(description)
    jianying.export_video()
# 使用百度AIGC平台生成短视频
from aigc import AIGC

def generate_video_with_aigc(description):
    aigc = AIGC()
    aigc.create_project()
    aigc.add_text(description)
    aigc.export_video()

使用示例

description = generate_video_description("一个美丽的日落")
generate_video_with_jianyingpro(description)
description = generate_video_description("一个美丽的日落")
generate_video_with_aigc(description)
python 实现 PC端剪映字幕转换SRT格式工具代码-Python 实现,# -*- coding: utf-8 -*- import getpass import os import json import re def get_time(time_int): # 使用正则表达式处理时间格式化问题 if time_int == 0: return '00:00:00,000' p = re.compile(r'(\d*)(\d{3})\d{3}') pl = p.findall(str(time_int))[0] if pl[0] == '': hms = '00:00:00' else: h = 0 m = 0 s = int(pl[0]) while s >= 60: m += 1 s -= 60 while m >= 60: h += 1 m -= 60 while h >= 24: exit('暂不支持超过24小时的字幕文件转换') hms = ':'.join((str(h).zfill(2), str(m).zfill(2), str(s).zfill(2))) return ','.join((hms, pl[1])) def format_time(start, end): # 拼接时间格式化后的字符串 return ' --> '.join((get_time(start), get_time(end))) def main(): # 取得电脑的用户名 username = getpass.getuser() # 拼接取得json文件夹所在地址 json_root_path = 'C:/Users/' + username + '/AppData/Local/JianyingPro/User Data/Projects/com.lveditor.draft/' # 拿到最后一次打开的json文件(内含字幕信息) if os.path.exists(json_root_path): with open(os.path.join(json_root_path, 'root_draft_meta_info.json'), 'r', encoding='utf-8') as f: json_path = (json.load(f)['all_draft_store'][0]['draft_fold_path']) # 打开json文件并将其转换为srt文件 if os.path.exists(json_path): with open(os.path.join(json_path, 'draft_content.json'), 'r', encoding='utf-8') as f: j = json.load(f) l1 = [] l2 = [] for i in j['tracks'][1]['segments']: start_time = int(i['target_timerange']['start']) end_time = int(i['target_timerange']['start'] + i['target_timerange']['duration']) l1.append(format_time(start_time, end_time)) for i in j['materials']['texts']: l2.append(i['content']) idx = 0 # 可以在此处自定义新建的srt字幕路径及文件名 with open('测试.srt', 'w', encoding='utf-8') as srt: while idx < len(l1):
<think>好的,我现在需要处理用户关于AIGC(生成式人工智能)的查询。用户明确要求技术介绍应用场景,并且希望生成相关问题。首先,我要确保回答结构清晰,符合用户的要求,同时遵守系统级指令中的格式规范,比如正确使用LaTeX引用标识。 首先,我需要回顾用户提供的引用内容。引用[1]到[4]涵盖了AIGC的发展历程、技术场景、应用未来前景。特别是引用[1]提到技术推进路线应用场景,引用[2]讨论未来前景,引用[3][4]涉及工作原理认知智能的发展。这些信息可以作为回答的基础,但需要整合并用自己的话表达,避免直接复制。 接下来,技术介绍部分需要涵盖AIGC的基本概念、核心技术。例如,生成对抗网络(GANs)、变分自编码器(VAEs)、Transformer模型扩散模型(Diffusion Models)是关键技术。需要简要解释每个技术的工作原理,同时用LaTeX格式标注数学表达式,比如GAN的损失函数: $$ \min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))] $$ 这部分需要确保公式正确,并且独立成段使用$$...$$格式。 应用场景方面,引用中提到的内容有游戏、艺术创作、医疗、教育等。需要分点详细说明每个场景的具体应用,比如游戏中的NPC生成,艺术创作中的图像生成,医疗中的药物研发等。同时,结合引用[2]提到的游戏计算领域的应用,引用[4]中的多领域知识应用,可以丰富这部分内容。 生成相关问题部分,需要根据技术介绍应用场景提出相关的问题,例如核心技术对比、伦理问题、行业影响等,确保问题有针对性且能引导进一步探讨。 在引用标识方面,每个引用需要自然地附加在相关段落的末尾。例如,在讨论技术发展历程时引用[^1],未来前景引用[^2],工作原理引用[^3],认知智能引用[^4]。 最后,检查格式是否符合要求:行内数学表达式用$...$,独立公式单独成段,中文回答,结构清晰,引用正确。确保没有使用Markdown格式,Python代码块用三个反引号包裹,但根据用户示例,似乎用户希望避免代码块,所以可能不需要包含代码示例,除非必要。 总结步骤: 1. 技术介绍分点,包含核心技术数学模型。 2. 应用场景分领域详细说明。 3. 生成相关问题,覆盖技术、应用、挑战等方面。 4. 正确添加引用标识,确保每个引用与内容相关。 5. 检查LaTeX语法格式规范。</think>### AIGC技术介绍 生成式人工智能(AIGC)通过大规模数据训练深度学习模型,实现文本、图像、音频等内容的自主生成。其核心依赖以下技术: #### 1. **生成对抗网络(GANs)** - 由生成器$G$判别器$D$组成,通过对抗训练优化目标函数: $$ \min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))] $$ - 应用示例:图像生成、风格迁移[^1]。 #### 2. **变分自编码器(VAEs)** - 通过概率编码器$q_\phi(z|x)$解码器$p_\theta(x|z)$,最大化证据下界(ELBO): $$ \mathcal{L}(\theta, \phi; x) = \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x) \parallel p(z)) $$ - 特点:生成多样化内容,适用于文本分子设计。 #### 3. **Transformer模型** - 基于自注意力机制,处理长序列依赖关系,公式为: $$ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ - 代表应用:ChatGPT、Claude等对话系统[^3]。 #### 4. **扩散模型(Diffusion Models)** - 通过逐步去噪生成数据,前向过程定义$q(x_t|x_{t-1})$,逆向过程学习$p_\theta(x_{t-1}|x_t)$。 --- ### AIGC应用场景 1. **内容创作** - **艺术设计**:生成插画、3D模型(如MidJourney)[^1]。 - **文本生成**:新闻撰写、代码辅助(GitHub Copilot)[^3]。 2. **游戏与娱乐** - 自动生成NPC对话、游戏关卡设计,提升开发效率[^2]。 3. **医疗与科研** - **药物发现**:预测分子结构,加速研发流程(如AlphaFold)[^4]。 - **医学影像分析**:生成合成数据辅助诊断[^1]。 4. **教育** - 个性化学习材料生成,例如数学题解析$f(x)=\int_0^1 x^2 dx$[^3]。 5. **商业服务** - 自动化客服、营销文案生成,降低成本[^2]。 --- ### 挑战与未来 - **技术瓶颈**:生成内容的可控性、逻辑一致性仍需提升。 - **伦理问题**:版权归属、虚假信息传播需规范。 - **多模态融合**:未来将结合文本、图像、语音实现跨模态生成[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值