数学基础--最大后验概率估计(MAP)

想要了解最大后验概率估计,需要学会贝叶斯定理以及极大似然估计

贝叶斯定理--用来描述两个条件概率之间的关系。

   - P(A)表示事件A发生的概率,称为先验分布(Prior)。
   - P(B)表示事件B发生的概率,称为证据(Evidence)。
   - P(A | B)表示事件B已经发生的情况下,事件A发生的概率,称为后验分布(Posterior)。
   - P(B | A)表示事件A已经发生的情况下,事件B发生的概率,称为似然(Likelihood)。

贝叶斯定理的公式

 极大似然估计(MLE)

        又称最大似然估计,把待估计的参数看作是确定性的量(但其取值未知),其最佳估计就是使得产生已观察到的样本的概率为最大的那个值。简单来讲,就是给定模型,然后通过收集数据,求该模型的参数

        例如,投10次特殊的硬币给定模型),出现6次正面4次反面(请注意,这里10次结果有顺序,后面所有的投硬币结果,都有顺序)(收集数据),现在要估计投这枚硬币出现正面的概率(求参数)。

实验中获得数据 x_{0}= {反、正、正、正、正、反、反、正、反、正}

其似然函数为:f(x_{0}|\theta )=\theta ^{6}\cdot (1-\theta )^{4} (满足二项分布)

最大似然估计的目的是使似然函数取最大值的\hat{\theta }作为\theta的估计。

常用的方法是令 \frac{df(x|\theta )}{d\theta }=0

解得\hat{\theta }=0.6

最大后验概率估计(MAP)

        贝叶斯学派学者认为模型参数\theta为一个已知分布的随机变量,而\theta的估计\hat{\theta }即为参数\theta在其分布上的最大值。

        利用贝叶斯定理则是希望通过已知的随机变量\theta的先验分布,结合证据和似然更新得到接近其真实分布的后验分布,再通过最大化后验分布的\hat{\theta }作为\theta的估计值,这种方法被称为最大后验概率估计。

最大后验概率估计的目标为\hat{\theta }=argmax\left ( P(\theta |x) \right )

        同样是刚才的实验,对于随机变量\theta我们对其有一个先验的认识,其满足\theta∼N(0.5,1)的正态分布。由贝叶斯公式可知:P(\theta |x)\propto P(x|\theta)\cdot P(\theta ),所以原目标可转化为:

\hat{\theta }=argmax\left ( P(x|\theta)\cdot P(\theta ) \right )

那么P(x|\theta)\cdot P(\theta )=\theta ^{6}\cdot (1-\theta )^{4}\cdot N(0.5,1), \hat{\theta }=0.5977

随着数据样本的增多,MAP会慢慢向MLE靠拢

最后总结一下就是:最大后验的实质就是对参数的每一个可能的取值,都进行极大似然估计,并根据这个取值可能性的大小,设置极大似然估计的权重,然后选择其中最大的一个,作为最大后验估计的结果。

 参考文献:贝叶斯定理与最大似然估计和最大后验概率估计 - 知乎 (zhihu.com)

                   https://blog.csdn.net/fq_wallow/article/details/104383057

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值