深度学习:数据集生成-处理不带difficult的voc标签

本文介绍在处理VOC数据集时如何正确解析和处理difficult属性,包括使用Python进行XML文件读取和转换的方法,确保标注数据的完整性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

示例

<--有difficult-->
</object>
<object>
	<name>person</name>
	<pose>Unspecified</pose>
	<truncated>0</truncated>
	<difficult>1</difficult>
	<bndbox>
		<xmin>336</xmin>
		<ymin>71</ymin>
		<xmax>424</xmax>
		<ymax>159</ymax>
	</bndbox>
</object>
<--无difficult-->
<item>
<name>person</name>
	<bndbox>
				<xmin>201</xmin>
				<ymin>163</ymin>
				<xmax>314</xmax>
				<ymax>292</ymax>
	</bndbox>
</item>

注意到difficult选项
在标记voc数据集时我们需要注意到difficult选项,如果数据集中没有difficult选项 则可以做如下处理

import xml.etree.ElementTree as ET
from os import getcwd

sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]

classes = ["hat","person"]


def convert_annotation(year, image_id, list_file):
    in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id),encoding='utf-8')
    tree=ET.parse(in_file)
    root = tree.getroot()
    a=1
    i=a
    
    for obj in root.iter('item'):
        #difficult = obj.find('').text
        cls = obj.find('name').text
        #if cls not in classes or int(difficult)==1:
            #continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text))
        #print(image_id)
        list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))

    for obj in root.iter('object'):#找xml文档里的object 
        try:
            difficult = obj.find('difficult').text#找object对里的difficult对  在不同格式里可能找不到
            cls = obj.find('name').text
            if cls not in classes or int(difficult)==1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            #print(image_id)
            b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text))
            list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
            
        except Exception:
            print(i,end="")
   
wd = getcwd()

for year, image_set in sets:
    image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set),encoding='utf-8').read().strip().split()
    list_file = open('%s_%s.txt'%(year, image_set), 'w',encoding='utf-8')
    for image_id in image_ids:
        list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg'%(wd, year, image_id))
        convert_annotation(year, image_id, list_file)
        list_file.write('\n')
    list_file.close()

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值